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Abstract
We study the long-run conventions emerging in a stag-hunt game when agents are
myopic best responders. Our main novel assumption is that errors converge to zero at
a rate that is positively related to the payoff earned in the past. To fully explore the
implications of this errormodel,we introduce a further novelty in thewaywemodel the
interaction structure, assuming that with positive probability agents remain matched
together in the next period. We find that, if interactions are sufficiently persistent
over time, then the payoff-dominant convention emerges in the long run, while if
interactions are quite volatile, then the maximin convention can emerge even if it is
not risk-dominant. We contrast these results with those obtained under two alternative
error models: uniform mistakes and payoff-dependent mistakes.

Keywords Risk-dominant · Payoff-dominant · Maximin · Stag hunt · Stochastic
stability

JEL Classification C72 · C73

1 Introduction

Aconvention can be understood as an equilibriumof a coordination gameplayed by the
individuals belonging to a group or a society: once a particular way of doing things
becomes established as a rule, it continues in force because we prefer to conform

B Leonardo Boncinelli
leonardo.boncinelli@unifi.it

Ennio Bilancini
ennio.bilancini@imtlucca.it

1 IMT School of Advanced Studies, Piazza S. Francesco 19, 55100 Lucca, Italy

2 Dipartimento di Scienze per l’Economia e l’Impresa, Università degli Studi di Firenze, Via delle
Pandette 9, 50127 Florence, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00199-019-01174-y&domain=pdf
http://orcid.org/0000-0002-2027-3992
http://orcid.org/0000-0003-0626-5133


498 E. Bilancini, L. Boncinelli

to the rule given the expectation that others are going to conform (Lewis 1969).1

An important issue that can be studied in this setting is the tension between Pareto
dominance and safety: while a convention pays a higher payoff to every individual if
coordination is actually achieved, another convention is less risky since it performs
better if miscoordination occurs. The stylized game that is used to capture this conflict
is the stag-hunt game, which is often seen as a paradigmatic representation of the
obstacles to achieve social cooperation (Skyrms 2004).

In this paper, we study the evolution of conventions in a population of agents who
are matched in pairs to play a stag-hunt game. Each agent only occasionally revises his
action, and when he does so, he chooses a myopic best reply. We derive the emerging
long-run convention applying the notion of stochastic stability, which was introduced
by Foster and Young (1990) and then developed by Young (1993) and Kandori et al.
(1993) building on technical results in Freidlin and Wentzell (1998). Basically, when
agents are allowed to make mistakes with a small probability, stochastic stability
selects those equilibria that are relatively easiest to reach in terms of mistakes—also
referred to as errors or mutations—starting from other equilibria. Importantly, Bergin
and Lipman (1996) have highlighted the strong dependence of predictions on the
error structure: if mutation rates are state-dependent, which equilibrium is selected
by stochastic stability depends on exactly how these rates vary from state to state.
Therefore, having an appropriate error model turns out to be crucial for stochastic
stability to give reliable predictions in terms of equilibrium selection.Moreover, which
convention is stochastically stable is also sensitive to the specification of the matching
mechanism, as shown by, e.g., Robson and Vega-Redondo (1996).2 Importantly, the
implications of an error model may depend on the interaction structure.

The novelty of our contribution stems from considering two innovative features:
(1) errors converge to zero at a rate that is positively related to the payoff earned in
the past and (2) agents are randomly matched to play a stag-hunt, but their interaction
does not necessarily terminate after the first round of play.

We refer to the error model indicated in (1) as condition-dependent mistakes, draw-
ing from the literature on genetics and biology (Agrawal 2002).We contrast the results
obtained under condition-dependent mistakes with those obtained under alternative
error models, where the risk-dominant convention typically emerges: errors converg-
ing to zero at a rate that is constant over states, referred to as uniform mistakes, and
errors converging to zero at a rate that depends on expected losses, referred to as
payoff-dependent mistakes.

In regard to the interaction structure referred to in (2), we introduce a parameter that
measures the probability that a formed pair is broken after each play of the stag-hunt.
This model of interaction encompasses both the case of random pairwise encounters—
when the probability that a formed pair breaks is 1—as well as the case of fixed
exogenous neighborhood—when the probability that a formed pair breaks is 0.Wefind
that under condition-dependent mistakes such parameter crucially determines which
convention is selected in the long run.While ourmodel of interaction is similar in spirit

1 See Young (2015) for an overview of other mechanisms that can sustain conventions.
2 Their main conclusion is that, differently from Kandori et al. (1993), the payoff-dominant convention is
selected in the long run when the population is large enough.
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to that in Robson and Vega-Redondo (1996), there are also substantial differences. In
particular, in their model there is no role for termination probability and agents follow
an imitative behavioral rule, in that they tend to adopt the strategy that led to the highest
average payoff.

At a first glance, one might expect that condition-dependent mistakes always favor
the selection of the payoff-dominant convention. Intuitively, one can think of a self-
reinforcingmechanism at work here: a larger equilibrium payoff induces less mistakes
that in turn sustain the current equilibrium. In fact, we find that this is so only if inter-
actions are sufficiently persistent over time, i.e., long-lasting. Instead, if interactions
are characterized by intermediate levels of volatility, i.e., they are somewhat liable to
being terminated from period to period, then the selection of the risk-dominant con-
vention is obtained; moreover, if interactions feature high levels of volatility, i.e., they
are quite unlikely to last until next period, then the maximin convention is obtained
when mistake rates are sufficiently sensitive to payoffs (and the risk-dominant con-
vention is obtained otherwise). Notably, in the latter case a maximin convention can
be stochastically stable even if it is not risk-dominant (Harsanyi and Selten 1988), that
is when its basin of attraction is smaller than that of the other convention.3 We find
it also remarkable that the long-run convention emerging under condition-dependent
mistakes crucially depends on the interaction structure, in particular on the extent to
which agents remain matched together over time as opposed to be frequently reshuf-
fled.

As a consequence, it turns out that when interactions are rather volatile, the
inefficiency of the stochastically stable convention can be particularly severe under
condition-dependent mistakes. The reason behind this is related to a form of contagion
of mistakes. If relationships are volatile and the population size is large, manymistakes
are required tomove fromone convention to the other.Whenwe start froma convention
and we try to reach the other convention, an agent who has changed action by mis-
take can be matched with someone who still takes the conventional action and hence
obtains a low payoff due to miscoordination. Under condition-dependent mistakes,
such an agent is in turn more likely to make a mistake, thus fostering the propagation
of mistakes. Since the maximin action pays a larger payoff in case of miscoordination,
under condition-dependent mistakes we have that each mistake (other than the first
mistake, which cannot be the result of contagion) is less likely when we start from the
maximin convention. This makes the maximin convention more resilient, allowing it
to be stochastically stable even if its basin of attraction is the smallest. In this perspec-
tive, our contribution may be seen as related to the literature on contagion (see, e.g.,
Ellison 1997; Morris 2000; Alós-Ferrer and Weidenholzer 2008), with the difference
that contagion does not take place via best responses but via mistakes.

The rest of the paper is organized as follows. Section 2 contrasts this paper with
the relevant literature. Section 3 presents the social game and defines the unperturbed
dynamics of behavior in the population. Section 4 introduces errors with the aim
of selecting between conventions, studying how this selection depends on the error
model used and the termination probability of a relationship. Section 5 discusses the

3 Maximin plays a role also in the recent work by Sawa and Wu (2018), where a risk-dominant strategy is
no longer guaranteed to be stochastically stable if it is not maximin too.
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robustness of our findings, and Sect. 6 suggests an interpretation of the contribution
and draws suggestive conclusions.

2 Related literature

Myopic best response is a typical choice rule in the literature on stochastic stability,4

and independent inertia—i.e., at every time each agent has an independent, strictly
positive probability not to receive the opportunity to revise his action—is a widely
applied revision protocol as well.5 Our model is more innovative for what concerns the
interaction structure and, in particular, the error model. Hence we focus and organize
our review of the literature on such issues, and we then conclude with a few recent
contributions that have started investigating human error-making froman experimental
perspective.6

2.1 Interactions

The stability and shape of the structure of interactions has been shown to have impor-
tant consequences on group behavior (Macy and Willer 2002). The literature on the
evolution of conventions in the stag-hunt game has explored a variety of interaction
structures. Some models consider random pairwise encounters (Kandori et al. 1993;
Kandori and Rob 1995; Young 1993). In other models, the interactions occur with
exogenously given neighbors—as in Ellison (1993), where players are arranged on a
circle and interact with the two immediate neighbors.7 Typically, in these models the
risk-dominant convention is selected in the long run. Another way to model agents’
interactions is to consider endogenous network formation, where agents choose with
whom to interact (Goyal and Vega-Redondo 2005; Jackson and Watts 2002; Staudigl
and Weidenholzer 2014). In these models, the payoff-dominant convention is shown
to emerge in the long run if the single interaction is sufficiently costly or the total
number of interactions per agent is sufficiently constrained. An alternative to network
formation is that agents can choose where to interact—not with whom—selecting a
location among a number of locations available and then interacting randomly with
agents choosing the same location (Oechssler 1997; Ely 2002; Bhaskar and Vega-
Redondo 2004). The possibility to “vote by their feet” helps agents to coordinate on
the payoff-dominant action (Efferson et al. 2016, provide experimental evidence of
this). Notably, if restricted mobility is imposed in these models with locations, the

4 Other possible choice rules encompass—among others—imitation, reinforcement learning and better
response (see Young 2001, Section 3.1, for a discussion of different varieties of learning behavior).
5 The role of the revision protocol on the speed of convergence in stochastic evolutionary models has been
investigated by Norman (2009). We discuss in Sect. 5 the robustness of our results to different revision
protocols.
6 For a thorough review of evolutionary models and coordination games, the interested reader can refer to
the recent survey in Newton (2018b).
7 See Peski (2010) for a general framework to study local interaction with an exogenous interaction struc-
ture, and Newton (2018a) for a recent extension. See also Weidenholzer (2010) for a recent survey on local
interaction models focusing on social coordination.
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coexistence of conventions can be obtained, with one convention being established in
one place and the other convention in another place (Anwar 2002; Shi 2013a; Blume
and Temzelides 2003). Bilancini and Boncinelli (2018) obtain coexistence of con-
ventions also with network formation and constrained interaction, in a model where
agents have different types, types are only locally observable, and type mismatches
are costly.8

2.2 Error model

Some decision errors, or mistakes, have been shown to be inevitable in any decision-
making process (Haselton and Buss 2000; Nesse 2005). Different error models have
been explored by the literature on stochastic stability. Most of the research in eco-
nomics has focused on mistake rates that are state independent, i.e., uniform across
states. The plausibility of such an error model can be argued on the basis of the result
in Van Damme and Weibull (2002), who consider a model where agents with some
effort can control the probability to make a mistake, and obtain that mistake rates
approach zero at the same rate across states when control costs become vanishingly
small. In some circumstances, however, it may be reasonable to expect that mistakes
generating smaller payoff losses occur with a higher rate. This is what happens, for
instance, in the logit response dynamics introduced by Blume (1993), which is related
to the notion of quantal response equilibrium (McKelvey and Palfrey 1995) and, to
some extent, to the notion of proper equilibrium (Myerson 1978).

In biology, a different form of state-dependent mutations has been considered, as
a function of the condition of the organism: lower condition organisms have a higher
mutation rate (Agrawal 2002).9 We believe that such a class of error models can be
relevant for economics as well, at least for a couple of reasons. The first one applies
whenever higher payoffs can be related to better physiological conditions: Individuals
that are better fed andhealthier are less likely tomakemistakes. This justification seems
particularly relevant for the evolutionary analysis of the stag-hunt game, which aims
at representing typical interactions in societies over a very long time span and hence
may also consider the remote past. The second reason hinges on the interpretation
of mistakes as experimentation: Agents that earn higher payoffs are less inclined to
change action and see if, by chance, coordination can be obtained elsewhere.10 On
a more general ground, the importance of realized payoffs in contrast with expected
payoffs as a driver of behavior relates our contribution also to the literature on learning
focusing on reinforcement of successful behavior (see Young 2009 and Pradelski and
Young 2012 on trial and error, Huttegger and Skyrms 2012 on probe and just—both
based on a similar idea by Thuijsman et al. 1995 on the behavior of foraging bees—and
Nax et al. 2016 for recent experimental evidence).What distinguishes our contribution

8 Coexistence of conventions can emerge also under global random interaction when agents are heteroge-
neous, as in the case they belong to distinct cultural groups (see, e.g., Carvalho 2017).
9 See also the extensions in Shaw and Baer (2011) and Cotton (2009). See Sharp and Agrawal (2012) for
evidence on bacteria and Agrawal and Wang (2008) for evidence on insects.
10 This justification is possibly related to the existence of an aspiration level, like in Binmore and Samuelson
(1997), where the realized payoff is given by the expected payoff plus a random shock, and the individual
changes action only if the realized payoff falls below the aspiration level.
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from this literature is mainly that experienced payoffs only affect the likelihood of
mistakes, and in particular the level of experienced payoff, not its change (in other
words, the benchmark in our model is non-adaptive, while it is adaptive in the models
belonging to the literature under consideration).

The idea that a lower past payoff makes mistakes more likely is also partly related
with the notion of intentional mistakes introduced by Naidu et al. (2010),11 who study
contract games with the assumption that only actions that can lead to higher payoffs
can be chosen by mistake, and more generally with coalitional stochastic stability
(Newton 2012), where mistakes that can be rationalized as profitable deviations for
a coalition of individuals are assumed to be more likely than other mistakes. We
stress that the latter kind of experimentation involves a certain degree of group-level
rationality, while condition-dependent mistakes are purely based on individual past
satisfaction.

The general formulation of errors in Blume (2003) andMaruta (2002) encompasses
uniform mistakes and payoff-dependent mistakes, but not condition-dependent mis-
takes. Those contributions investigate under which conditions on the error model the
risk-dominant convention is selected in the stag-hunt game. In doing this, error prob-
abilities are assumed to be general functions of current expected payoffs, but they are
not allowed to depend on past payoffs, as is the case in condition-dependent mistakes.
Moreover, while Blume (2003) and Maruta (2002) conduct their analysis under the
assumption of random matching only, we also explore the role of the termination
probability. In the context of matching problems, Newton and Sawa (2015) consider
an extremely large class of error models (encompassing all ours) and identify a nec-
essary condition for a matching to be stochastically stable, namely being most robust
to one-shot deviation.12

2.3 Experimental evidence

Experiments have recently been conducted in order to establish which error model bet-
ter fits actual individual behavior. Mäs and Nax (2016) analyze data from a laboratory
experiment on coordination in networks and find that the vast majority of decisions
constitute myopic best responses, and deviations are less frequent when implying
larger payoff losses. In addition, deviation rates vary with patterns of realized payoff,
with error rates going up when payoff goes down—indicating the potential presence
of condition-dependent mistakes. Lim and Neary (2016) have conducted a laboratory
experiment where subjects play a language game (see Neary 2012), and they also find
that behavior is highly consistent with the myopic best response rule. In particular,
deviations from the learning rule occur with a likelihood that depends negatively on
the payoff of the myopic best response, but not on the deviation payoff, which, again,
suggests that condition-dependent mistakes may be present. They also find autocorre-

11 Recently, Hwang et al. (2016) make use of intentional mistakes to show that unequal conventions may
persist over long periods of time despite being inefficient and not supported by formal institutions.
12 There is a growing literature that investigates the impact of error models on stochastic stability results
applied in matching and assignment problems, showing that different error models lead to different predic-
tions (see, e.g., Klaus and Newton 2016; Nax and Pradelski 2015; Boncinelli and Pin 2018).
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Fig. 1 A stag-hunt game A B

A a c

B d b

lation in deviations from thebest response action.They conclude that experimental data
are more in line with intentional and payoff-dependent mistakes, rather than uniform
mistakes.13 Hwang et al. (2018) study two populations of players who are matched to
play a two-player coordination game with zero payoffs off-diagonal14—which makes
it hard to detect condition-dependent mistakes, since an equilibrium where an agent
obtains a higher payoff is associated with a more severe expected loss for such an
agent in case of deviation. Their experimental data are consistent with high levels of
best response play, as well as payoff-dependent and intentional mistakes. No direct
test of condition-dependent mistakes has been conducted so far.

3 Model

We consider a population of n agents, indexed according to the set of integers N =
{1, 2, . . . , n}, with n even. Time is discrete and denoted with t = 0, 1, 2, . . .. Agents
arematched in pairs to interact repeatedly.Once amatch between two agents is formed,
there is a probability τ > 0 that it gets broken after each interaction. We refer to τ as
the termination probability. Agents without a partner are randomly matched among
themselves.

The one-shot interaction between two matched agents takes the form of a 2-player
stag-hunt game. Each agent plays only with the agent with whom he is currently
matched. The table in Fig. 1 describes the payoffs associated with the game. (Payoffs
are given only for the row player, since the game is symmetric.) We use π(x, x ′) to
indicate the payoff earned by an agent who plays x against an agent who plays x ′.

We assume that b > a, that is, B is the payoff-dominant action. We also assume
that c > d, so that A is the maximin action. We do not make an assumption about
which action is risk-dominant: If a + c > b + d, then A is the risk-dominant action,
while B is the risk-dominant action if b + d > a + c.15 We assume that either A or
B are risk-dominant, i.e., a + c �= b + d. We further assume that a ≥ c, and we note
that b > d is implied by previous assumptions.

13 Frey et al. (2012) conduct an experiment to study the emergence of conventions in a networked coordina-
tion game and find evidence that the behavior dynamics following an initial deviation leads agents’ choices
away from the risk-dominant equilibrium more often than it does from the payoff-dominant equilibrium.
14 In a similar setting, see also the analysis and approximation results by Hwang and Newton (2017).
15 The game, in case action A is not risk-dominant, is sometimes called an assurance game.
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The population state at time t is described by st = (αt , μt ), with αt =
(αt (1), . . . , αt (n)) and μt = (μt (1), . . . , μt (n)), where αt (i) ∈ {A, B} is the action
of agent i at time t , and μt (i) ∈ N\{i} is the partner interacting with i at time t , with
μt (i) = j implying μt ( j) = i and μt (i) �= μt ( j) for all i, j ∈ N , i �= j .

The action revision protocol is as follows. In each time period, every agent has an
independent probability γ ∈ (0, 1) to be given the opportunity to revise his action. An
agent who is given a revision opportunity at time t takes a choice following a myopic
best response rule against st−1, randomizing in case of indifference. This means that
actions are taken before an agent knows whether his current match terminates (see
Sect. 5 for a discussion of this point).

Preliminarily to give an expression for the expected payoff, it is useful to observe
that, given the termination probability τ , every agent is matched in the next period
with a partner that is different from the current one with a probability that depends on
n and that is equal to16

δ = τ − τ

n
2−1∑

k=0

( n2 − 1)!
k!( n2 − 1 − k)! (1 − τ)

n
2−1−kτ k

1

2k + 1
, (1)

where δ is expressed as the probability that the current match terminates, i.e., τ ,
minus the probability to get rematched with the same partner. To better understand the
expression used for this probability, we note that the binomial coefficient measures the
number of combinations of k other matches terminating out of n − 1 overall matches,
while (1− τ)

n
2−1−kτ k is the probability of any such combination to occur, and finally

1
2k+1 is the probability to be rematched exactly with the same partner when 2k + 1
other agents are in the pool of unmatched agents.

We observe that in the event that agent i is matched with a new partner, which
happens with probability δ, any other agent j (that is neither i nor his previous partner)
has the same probability to become the next partner. This allows us to write the payoff
that agent i expects (with adaptive expectations implied by myopic best response) to
earn at time t if he chooses action x ∈ {A, B} as follows:

�st
i (x) = δ

⎛

⎜⎜⎜⎝

n∑

j=1, j �=i,
j �=μt−1(i)

π(x, αt−1( j))

n − 2

⎞

⎟⎟⎟⎠ + (1 − δ)π
(
x, αt−1

(
μt−1(i)

))
. (2)

The first term in (2) is the expected payoff of interacting with a newmate, weighted by
the probability δ that this happens. We note that the n − 2 agents different from both
μt−1(i) and i have all the same probability to terminate the match with their partner
at t − 1 and then be rematched with i . The second term in (2) is the expected payoff

16 We note that 0! = 1 and 00 = 1. So, when τ = 1 we have that δ = 1−1/(n−1)which means that, even
if partnerships terminate with certainty, there is always a positive probability to interact with the previous
partner through re-matching.
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of i interacting with μt−1(i), weighted by the probability (1 − δ) that i and μt−1(i)
keeps on interacting at next time.

We say that action x ∈ {A, B} is best response for agent i at state st if �st
i (x) ≥

�st
i (y), with y ∈ {A, B}, y �= x .
We call convention A the set of states s = (α, μ) such that α(i) = A for every

i ∈ N . Analogously, we call convention B the set of states s = (α, μ) such that
α(i) = B for every i ∈ N . We refer to convention A as the maximin convention,
since A is the maximin action. Analogously, we refer to convention B as the payoff-
dominant convention, since B is the payoff-dominant action. Finally, by risk-dominant
convention we refer to either convention A or convention B, depending on whether A
or B is the risk-dominant action.

The dynamic system under consideration is aMarkov chain (see Young 2001, for an
overview of Markov chain theory). The definition of recurrent class is worth remem-
bering. A set of states C is a recurrent class if: (i) every pair of states in C communicate
with each other—meaning that there is a positive probability to move from one state
to the other in a finite number of steps—and (ii) no state in C communicates with a
state not in C—so that the probability of leaving C is zero.

The following lemma establishes that the recurrent classes of this Markov chain
coincide with the two conventions:

Lemma 1 Convention A and convention B are the only two recurrent classes for all
τ ∈ (0, 1].

It may be worth to note that from any state s in a convention, there is always a positive
probability to get to any other state s′ in the same convention: since τ > 0, there is
a positive probability that all matches in s terminate and that agents are rematched
according to s′.

4 Stochastically stable conventions

In the spirit of Young (1993) and Kandori et al. (1993), we add agents’ mistakes to
the model described in the previous section. In particular, the probability that an agent
who has received a revision opportunity in state s = (α, μ) makes a mistake, i.e.,
selects an action that is not a best response, approaches zero at the same rate as εr(i,s)

when ε goes to zero. We refer to r(i, s) > 0 as the resistance to mistake of agent i at s.
We remark that this formulation allows for mistake rates that depend on the agent who
takes the decision, and the state at which the decision is taken. Due to the introduction
of mistakes, we obtain a Markov chain that is irreducible, i.e., has a unique recurrent
class. This in turn implies that there exists a unique invariant distribution that describes
the fraction of time spent on each state in the long run, irrespectively of the initial state.

As ε goes to zero, mistakes become rarer and rarer, and the invariant distribution
converges to the so-called stochastically stable distribution. We say that a convention
is stochastically stable if its states have positive probability in the stochastically stable
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distribution.17 We rely on the techniques developed by Young (1993, 2001), which
allow to characterize stochastically stable conventions in terms of minimum stochastic
potential. In our model, the stochastic potential of convention A is the minimum total
number of mistakes over paths of states starting from convention B and reaching
convention A, with each mistake weighted by r(i, s) if made by agent i at state s.
The stochastic potential of convention B is analogously defined. A convention is
stochastically stable if its stochastic potential is smaller than or equal to the stochastic
potential of the other convention.

We proceed to determinewhich conventions are stochastically stable by considering
three different error models in turn. In doing so, the following thresholds on the
termination probability turn out to be important for our results:

τ̃m := min

{
a − d

a − d + b − c
,

b − c

a − d + b − c

}
;

τ̃M := max

{
a − d

a − d + b − c
,

b − c

a − d + b − c

}
.

Since a + c �= b+ d, it follows that 0 < τ̃m < τ̃M < 1. We note that these thresholds
measure the sizes of the two basins of attractions in the standard case of random
matching (corresponding to τ = 1). They turn out to be relevant in our analysis
because they tell us when a single mistake is enough to trigger the transition from
one convention to the other. The following argument aims at illustrating the claim.
Consider a state in which all agents but one are playing B. The partner of the agent
choosing A has the highest incentive to choose A. For him, A is a best response if
(1 − δ)a + δc ≥ (1 − δ)d + δb. This rearranges to δ ≤ a−d

a−d+b−c , which is implied

by τ < a−d
a−d+b−c if n is large enough. Any following switch from B to A by another

agent turns out to be easier. Finally, we note that proceeding in the same way we can
conclude that a single mistake is enough to trigger the passage from convention A to
convention B when τ < b−c

a−d+b−c (and the population is large).
The first error model that we consider is one where all mistakes are equal likely; in

the sense that all mistakes have the same resistance.

Definition 1 (Uniform mistakes) In the uniform mistakes model,

r(i, s) = h,

where h is a positive number.

The followingproposition stateswhich conventions are stochastically stable depending
on the termination probability.18

17 It is known that only states belonging to recurrent classes of the model without mistakes can receive pos-
itive probability in the stochastically stable distribution. Moreover, if one state receives positive probability
then all states in the same recurrent class receive positive probability as well.
18 Since the precise expression for the threshold value of n is cumbersome, we opted to omit it from the
proposition, aiming at an easier statement which points to the main result.

123



The evolution of conventions under condition-dependent… 507

Proposition 1 Under uniform mistakes, (a) if τ ∈ (0, τ̃m], then both the max-
imin convention and the payoff-dominant convention are stochastically stable, (b)
if τ ∈ (τ̃m, 1], then the risk-dominant convention is the unique stochastically stable
convention provided that n is large enough.

Proposition 1 provides a generalization of a standard result (see, e.g., Kandori
et al. 1993) by taking into account the termination probability. More precisely, if
the termination probability is sufficiently large, then the unique stochastically stable
convention is the risk-dominant convention, as in the case of pure random matching
analyzed in the literature (which corresponds to τ = 1). However, and quite intuitively,
if the termination probability is low enough, then both conventions turn out to be
stochastically stable. Indeed, by best response an agent would conform his action to
the current partner’s action even if no one else in the population takes that action, and
this is so because such an interaction is likely to last long over time. Hence, by means
of random matching of agents who remain unpaired, a single mistake can be enough
for an action to spread in the population, so that a convention is replaced by the other
convention, irrespectively of the initial convention.

We now turn to analyze what happens if mistakes are payoff-dependent, i.e., r(i, s)
is positively related to the difference between the expected payoff of playing the best
response action and the expected payoff of making a mistake.

Definition 2 (Payoff-dependent mistakes) In the payoff-dependent mistakes model,

r(i, s) = f
(
�s

i (x) − �s
i (y)

)
,

where f is a strictly increasing function with positive values, x is a best response for
agent i at state s, and y is the other action.

The following sharp result on stochastically stable conventions is obtained if mistakes
are payoff-dependent.

Proposition 2 Under payoff-dependent mistakes, the risk-dominant convention is the
unique stochastically stable convention for all τ ∈ (0, 1].

When the resistance to mistakes is increasing in the expected payoff loss, then
stochastic stability selects the convention that is risk-dominant. Proposition 2 states
that this result, which is well known in the literature for the case of uniform matching
(see VanDamme andWeibull 2002; Blume 2003), holds even if the termination proba-
bility is lower than 1.With respect to the error model where the resistances to mistakes
are uniform, here there is an additional effect to consider in order to assess which con-
vention is stochastically stable: Mistakes are particularly unlikely when starting from
the risk-dominant convention because they lead to larger expected losses. This further
effect allows to conclude that the risk-dominant convention is the unique stochasti-
cally stable convention even when a single mistake is sufficient to move from one
convention to the other, that is even when the termination probability is low.

Finally, we turn to consider an error model where the resistance to mistakes is
positively related to the payoff earned in the immediately preceding period.
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Definition 3 (Condition-dependent mistakes) In the condition-dependent mistakes
model,

r(i, s) = g(π(α(i), α(μ(i)))),

where g is a strictly increasing function with positive values.

It turns out that, under condition-dependent mistakes, it is possible that neither
the payoff-dominant nor the risk-dominant convention are selected in the long run.
In particular, it may happen that when B is not only payoff-dominant but also risk-
dominant, the maximin convention A is selected instead.

Preliminarily, it is useful to define the following:

β(τ) := τ(a − d + b − c) − (a − d)

τ (a − d + b − c) − (b − c)
,

which turns out to be equal to the ratio between the stochastic potential of convention
A and the stochastic potential of convention B under uniform mistakes (see the proofs
of Propositions 1 and 3).

Proposition 3 provides a characterization of stochastic stability under condition-
dependent mistakes.19

Proposition 3 Under condition-dependentmistakes, (a) if τ ∈ (0, τ̃m], then the payoff-
dominant convention is the unique stochastically stable convention, (b) if τ ∈ (τ̃m, τ̃M ]
then the risk-dominant convention is the unique stochastically stable convention pro-
vided that n is large enough, (c) if τ ∈ (τ̃M , 1] then the risk-dominant convention is
the unique stochastically stable convention for g(c)/g(d) < β(τ), while the maximin
convention is the unique stochastically stable convention for g(c)/g(d) > β(τ), in
both cases provided that n is large enough.

Figure 2 allows to visualize the results of Proposition 3 for n sufficiently large.
The intuition behind Proposition 3 is as follows. If the termination probability τ is

sufficiently small, then a single mistake is sufficient to move both from convention A
to convention B, and from convention B to convention A. A mistake in convention
A is weighted by g(a), while a mistake in convention B is weighted by g(b), as a
and b are the individual payoffs earned in the two conventions, respectively. Since
b > a the minimum stochastic potential is that of convention B, which is hence the
stochastically stable convention. Here we stress that c and d play no role at all.

If the termination probability τ is sufficiently large, thenmoremistakes are required
to move from one convention to the other. In particular, the number of mistakes grows

19 We opted not to deal with the case g(c)/g(d) = β(τ), which has measure zero in the parameter space
and would bring in the analysis annoying complications. Indeed, when g(c)/g(d) = β(τ), determining
which convention is stochastically stable is complicated by the working of the ceiling function, so that either
the risk-dominant convention, the maximin convention or both can be stochastically stable, depending on
specific values of n. Also, we opted not to provide a precise expression for the threshold value of n, for the
same reason as in Footnote 18. We note that, in general, such threshold here is different than the analogous
threshold in Proposition 1.
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10 τm τM
1

τ

g(c)
g(d) PD RD MM

β(τ)

Fig. 2 The orange color refers to action B, which is payoff-dominant, and the gray color to action A, which
is maximin. The orange-gray stripes pattern refers to either action B or action A, depending on which action
is risk-dominant (color figure online)

unboundedly in the population size n. Moreover, any mistake other than the first is
weighted by g(d)whenmoving from convention B to convention A, and by g(c)when
moving from convention A to convention B,20 since the agents who are most likely to
make amistake are those who end upmatched with someone who has already changed
action. When n is sufficiently large, what matters to establish which convention is
stochastically stable is g(c)/g(d) comparedwithβ(τ), which gives the relative number
of mistakes required to move from one convention to the other and which tends to
(b − c)/(a − d) when τ approaches 1. We stress that, if g(c)/g(d) is large enough,
then the stochastically stable convention corresponds to the maximin convention.

We observe that, under condition-dependent mistakes, all mistakes other than the
first one depend on the payoff of a miscoordinating agent. Indeed, when moving from
an established convention to a novel convention, any agent who is still choosing the
established action can be matched with an agent choosing the novel action in the next
period, obtaining a payoff that is quite low due to miscoordination and, hence, being
more likely tomistakenly choose the novel action in the following period. This form of
contagion of mistakes is allowed by the specific way in which the interaction structure
evolves over time in our model, which is the result of combining a positive termination
probability and the randommatching protocol for agents who have remained unpaired.

20 We remind that we have assumed c ≥ a. In Sect. 5, we comment on the case c < a when discussing the
payoff structure.
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Table 1 Stochastically stable conventions

Mistakes Termination probability

0 < τ ≤ τ̃m τ̃m < τ ≤ τ̃M τ̃M < τ ≤ 1

Uniform MM, PD RD RD

Payoff-dependent RD RD RD

Condition-dependent PD RD RD, if g(c)/g(d) < β(τ)

MM, if g(c)/g(d) > β(τ)

Table 1 summarizes the results of this section, facilitating the comparison of the
stochastically stable conventions in the three different error models that we have con-
sidered. We stress how the termination probability affects this comparison: relatively
to the cases of uniformmistakes and payoff-dependent mistakes, condition-dependent
mistakes favor the emergence of the efficient (i.e., payoff-dominant) convention when
relationships are quite persistent over time, while they favor the emergence of the
inefficient (i.e., maximin) convention when relationships are quite volatile, even if
such convention is not risk-dominant (and, hence, the inefficiency can be particularly
severe).

5 Discussion

In this section, we discuss the robustness of our findings along a few dimensions.

5.1 Revision protocol

Weare aware that the details of the revision protocolmay have important consequences
for the selection results obtained by stochastic stability.21 In this paper, we have con-
sidered the case of independent inertia, where each agent has an independent, strictly
positive probability of not being able to switch action at each period. Some procedures
in the proofs rely on the presence of inertia, andwe remark that the stochastic potentials
under payoff-dependent mistakes and condition-dependent mistakes would change if
an agent who switched action by mistake is not allowed to maintain the same action by
inertia in the following period. The importance of inertia is particularly evident under
condition-dependent mistakes, because the contagion of mistakes triggered by an ini-
tial mistake requires that miscoordinated interactions occur over time, so that in turn
mistakes must occur over time, with agents who already changed action maintaining
by inertia the same action until the threshold fraction of the population is reached. We
stress, however, that our results remain true with another prominent revision protocol

21 Alós-Ferrer and Netzer (2010) show how the result that stochastic stability under the logit dynamics
of Blume (1993, 1997) selects potential maximizers in exact potential games depends crucially on the
assumption of asynchronous learning, i.e., one and only one agent can revise strategy at each time. A
recent strengthening of the notion of stochastic stability which is robust to the specification of revision
opportunities and tie-breaking assumptions can be found in Alós-Ferrer and Netzer (2015).
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considered in the literature, i.e., asynchronous learning, where each period one and
only one agent is randomly drawn to revise his action. Basically, our proofs can be
understood as the construction of sequences of agents who revise their choice, one
per period of time, thanks to independent inertia. It is immediate to observe that the
same procedure can be followed with asynchronous learning, where by assumption
only one agent per period of time is allowed to change action.

5.2 Matching protocol

The interaction structure assumed in our model includes randommatching as a special
case when τ = 1, and considers relationships which becomemore persistent over time
as τ decreases. While random matching has a prominent role in the literature, many
other interaction structures have been considered as well, which are not included
as special cases of the interaction structure of this paper. We here provide a brief
discussion on the role which condition-dependent mistakes could play under two
alternative matching protocols which are common in the literature.

When the interaction structure is a round robin matching (i.e., each agent meets
every other agent in turn), realized payoffs coincide with expected payoffs for every
agent in each period. This prevents the occurrence of series of unlucky events which
yield very low payoffs to some agents, who would be the ones making mistakes
in a minimum resistance path exiting from a convention under condition-dependent
mistakes. Since unlucky events yield a relatively higher payoff for the maximin action
(which would make the maximin convention stabler relatively to the other convention
under condition-dependent mistakes), the elimination of uncertainty due to a round
robinmatching sterilizes a possible reasonwhy themaximin convention canbe selected
as stochastically stable.Wemay be led to think that risk dominance, which captures the
advantage in terms of the relative number of mistakes to move from one convention to
the other, remains the only determinant of stochastic stability, as it happens in the case
of uniformmistakeswhen the risk-dominant convention is always stochastically stable.
Under condition-dependent mistakes, however, there is an additional determinant to
be considered: Since error rates negatively depend on absolute payoffs, mistakes are
less likely when starting from the payoff-dominant convention than they are when
starting from the other convention. The result is that the payoff-dominant convention
may be stochastically stable even if it is not risk-dominant, provided that its basin of
attraction is not too small. This is in sharp contrast with what we obtain with condition-
dependent mistakes and random matching (τ = 1), while it resembles to some extent
what happens when τ is low.

When the interaction structure is as inEllison (1993)with twoneighbors (i.e., agents
are arranged in a circle, and each agent interacts with his two closest neighbors), a
single mistake is enough to reach the risk-dominant convention starting from the other
one, while all agents but one have to make a mistake starting from the risk-dominant
convention in order to reach the other convention.Despite this imbalance in the number
of mistakes, stochastic stability may select the convention that is not risk-dominant,
if it is payoff-dominant, because the single mistake that is required to leave it is the
most unlikely under condition-dependent mistakes. However, fixed everything else, if
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the population size is above some threshold level then the risk-dominant convention
becomes stochastically stable. The contagion that risk-dominance triggers in a local
interaction model is the driver of this result, showing that the selection of the risk-
dominant convention, which is known to be quite robust in many respects (Lee et al.
2003; Weidenholzer 2012), is also essentially robust to mistakes that are condition-
dependent.

5.3 Myopia

In our model, agents are myopic in the sense that they best reply to the current state,
applying simple adaptive expectations. However, the same agents are assumed to be
sophisticated enough to take into account the termination probability τ when forming
beliefs on the opponent’s play. One may wonder what would happen if agents were
more myopic, failing to take τ into consideration.

A natural approach here is to assume that agents misperceive the termination prob-
ability, forming beliefs by considering that the termination probability is equal to 1
when τ is close to 1, and equal to 0 when τ is close to 0. In other words, agents
myopically believe that either interactions are totally random or that they last forever.
We stress that our analysis applies quite naturally to these cases as well. In particular,
when agents behave as if τ = 0 the same results hold as for the case 0 < τ ≤ τ̃m
in Table 1; if instead agents behave as if τ = 1, the same results hold as for the case
τ̃m < τ ≤ 1 in Table 1withβ(1). The reason is that any sequence ofmatchings has still
positive probability to occur, since the actual τ is strictly between 0 and 1, while the
individual behavior is driven by the misperceived τ , so that agents behave conforming
to the partner when they think τ = 0 (allowing a single mistake to move the system
from any convention to the other one), and best-replying to the frequency of actions
in the population when they think τ = 1 (so that many mistakes have to accumulate to
allow a transition between conventions, the same as in the case of random matching).

5.4 Number of conventions

The substance of our results remains unaffected when there are more than two equi-
libria in the underlying social game. For the sake of the argument, consider the case
of symmetric games where there is one payoff-dominant convention. On one extreme,
when the termination probability is sufficiently low, the payoff-dominant convention
emerges in the long-run under condition-dependent mistakes, for essentially the same
reason as in the model of this paper: A single mutation is sufficient to move from one
convention to any another, and since the resistance to mistakes is larger the higher the
payoff earned, it turns out that the payoff-dominant convention is the most resilient in
terms ofmistakes, and hence, it is stochastically stable. On the other extreme, when the
termination probability is sufficiently high, many mistakes are required to move from
one convention to another, and each mistake but the first one must be weighted by the
resistance to mistakes of miscoordinating agents—since they interact with someone
who already changed action by mistake. Therefore, and analogously to what happens
with two actions only, the safest convention tends to be more resilient to mistakes,
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since it yields larger payoffs in case of miscoordination, even if the precise condition
to identify which convention is stochastically stable would require some dedicated
effort.

5.5 Long-term versus short-term yields of actions

We believe that most interactions with an underlying stag-hunt structure that are eco-
nomically relevant have, at least to some extent, the nature of investment. This means
that, when an action is taken, there is not certainty that the relationship will be main-
tained in the future until benefits are paid. Consistent with this opinion, we have
considered actions that cannot be conditioned to the event that the current match
survives or terminates. Admittedly, there are social interactions where actions yield
short-term consequences. In such situations, it is natural to assume that actions are
taken after the formation of matches. With this assumption, a single mistake is always
sufficient to move from one convention to the other, as long as the probability that a
pair remains in place in the next period is positive, which is always the case (even
when τ = 1) because of the probability of being rematched with the same partner after
the match has terminated. Indeed, with positive probability a match survives after an
agent has made a mistake, and this leads the other agent of the pair, who knows that the
match has not terminated, to change action by best response. By means of subsequent
reshuffles of pairs, the action originally chosen by mistake can spread to the whole
population. Hence the same results hold as in the case where τ ≤ τ̃m for the baseline
model.

5.6 Group interactions

In line with most of the literature, we have focused on pairwise interactions. Reason-
ably, interactions of the stag-hunt type may involve more than two agents. A relevant
question to ask is then to what extent our results carry on to multiple-agent interac-
tions. We argue that the quality of our results is easily preserved as long as not all
interactions take place among k > 2 individuals, but there is a positive probability
of interactions taking place among just two, just three, etc. On one extreme, consider
the case where the termination probability is sufficiently low. A group of agents, once
formed, is quite likely to last for a long time and hence what matters for stochastic
stability is the relative within-group stability to mistakes of the two conventions. We
observe that, in a coordination game, the pair is the group formation that is more likely
to switch from one convention to the other. Hence, analogously to what happens in the
model of this paper, a single mistake is enough to overturn convention in a group, and
then in the whole population by means of random matching, implying that the payoff-
dominant convention is stochastically stable under condition-dependent mistakes. On
the other extreme, consider the case where the termination probability is sufficiently
high. If the payoff loss when one group member deviates from a convention is largest
in case of a pair, then the pair is again the group formation that is relevant for stochastic
stability, when we construct paths from one convention to the other. As for the model
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in this paper, all mistakes other than the first one receive a larger weight when we start
from the maximin convention, which hence is likely to be stochastically stable.
Condition dependence onpast payoffs.Wehave assumed that the resistance tomistakes
of an agent at time t depends only on the payoff he earned at time t − 1. Another
reasonable possibility is to consider a weighted sum of a sequence of past payoffs. It
is easy to see that our results are maintained in such a case. Indeed, if the length of
the sequence determining the condition is equal to k, it is enough to exploit inertia,
considering that with positive probability no agent receives a revision opportunity for
k periods.22

5.7 Payoff structure

Lastly, we remark that the assumption a ≥ c has been made for simplicity only. In
case a < c, the only difference that arises concerns the analysis under condition-
dependent mistakes: When we move from the maximin convention to the payoff-
dominant convention, the path of minimum overall resistance is nowmade of mistakes
by agents who still coordinate on the risk-dominant action, since coordination pays
less than miscoordination. Therefore, all mistakes in the path are weighted by g(a).
Since d > a and hence g(d) > g(a), the maximin convention maintains an advantage
in terms of robustness to mistakes over the payoff-dominant (irrespectively of which
convention is risk-dominant), and this allows us to conclude that our results remain
unchanged, with the only adjustment that g(c)/g(d) is replaced by g(a)/g(d) in the
analysis.

6 Conclusions

In this paper, we have carried out an extensive analysis on the role of condition-
dependent mistakes in the evolution of conventions in stag-hunt interactions. We have
found that when interactions are quite persistent over time, i.e., the same two individ-
uals are likely to interact also in the future, then condition-dependent mistakes select
the payoff-dominant convention in the long run. However, as interactions become less
persistent, safety motives kick in and condition-dependent mistakes tend to select the
risk-dominant convention, as done by uniform mistakes and payoff-dependent mis-
takes. Furthermore, and notably, when interactions are extremely volatile the safety
motives become even stronger under condition-dependent mistakes, leading to the
selection of the maximin convention even if it is not risk-dominant, provided that it is
sufficiently safer than the payoff-dominant convention, or that mistake probabilities
are sufficiently sensitive to payoffs earned.

These results suggest a potential reasonwhy a trait embedding amodel of condition-
dependent mistakes might itself have experienced evolutionary success. Considering
human history in a very long-run perspective, it seems fair to say that interactions

22 If asynchronous learning is assumed as revision protocol, we might simulate inertia by giving revision
opportunities to agents who are already best responding and hence would keep choosing the same action
by best response.
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among human beings have been for most of the time extremely persistent—at least
back in the period when human societies were typically made of small numbers
of hunters/gatherers (roughly before the advent of agriculture about ten thousand
years ago). So, condition-dependent mistakes might have spread over other mistake
behaviors exactly because those groups following condition-dependent mistakes were
experiencing average higher condition.

The speculation above, whose soundness should be explored by specific research,
also suggests—by the same token—that inmodern societies condition-dependent mis-
takes might be quite detrimental. To the extent that interactions have becomemore and
more volatile, if individuals still behave according to condition-dependent mistakes,
then individuals might have been coordinating more and more on the safe convention,
even when the payoff-dominant convention is also risk-dominant.

Appendix

Proof of Lemma 1

Proof We first show that conventions A and B are recurrent classes. Consider two
states, s = (α, μ) and s′ = (α′, μ′), that belong to convention A. Starting from s,
we note that with positive probability all matches terminate (probability τ

n
2 ) and new

pairs are formed exactly as described byμ′ (probability
∏n−1

k=0
1

n−1−2k ). Since α = α′,
and any revising agent will maintain action A (so that it is irrelevant which agents
actually receive a revision opportunity), we can conclude that s′ can be reached from
s with positive probability. If s belongs to convention A and s′ does not, then it means
that α′(i) = B for some agent i . Starting from s, we simply observe that an agent
who receives a revision opportunity will never change from A to B, and hence, state
s′ cannot be reached with positive probability from s. Altogether, convention A is
shown to be a recurrent class. An analogous argument shows that convention B is also
a recurrent class.

We now show that no other recurrent class exists. Consider a state s that belongs
neither to convention A nor to convention B. We proceed to construct a path of states
starting from s and ending in either convention A or convention B, with each step
in the path having positive probability to occur. At time t we are in state s, and we
consider agent i , with x ∈ {A, B} being a best response action for i . We denote with K
the set of agents who are different from i and choose an action different from x in state
s. With probability γ (1 − γ )n−1, the only agent who receives a revision opportunity
at time t is agent i , who will choose x with positive probability (either 1 if x is the
unique best response or 1/2 otherwise). If set K is empty, then we have reached a state
in convention x . If set K is non-empty, then consider agent j ∈ K : With probability
at least equal to τ 2 1

n−1 the matches involving i and j terminate, and i and j are then
matched together. At time t + 1, with probability γ (1 − γ )n−1 the only agent who
receives a revision opportunity is agent j , who will choose x with positive probability,
since j is matched with an agent choosing x , and the fraction of other agents choosing
x has not decreased with respect to i’s decision at previous time. As a result, the
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cardinality of set K gets reduced by 1. If set K is now empty, then we have reached a
state in convention x ; otherwise, we repeat the above procedure. In a finite number of
iterations, equal to the cardinality of K , set K is cleared, and convention x is reached.

��

Proof of Proposition 1

Proof Without loss of generality, we set h = 1. We start by deriving the stochastic
potential ρu

A of convention A under uniform mistakes. Starting from a state in conven-
tion B, one mistake is required to turn one agent’s action from B to A. Suppose that
k agents choose A, with k ≥ 1. The agents who have the highest incentive to switch
from B to A are those who are matched to an agent choosing A. We note that we
always have a positive probability that an agent playing B is matched with someone
who already changed to A. The decision of one such agent involves the comparison
between

(1 − δ)a + δ
n − k − 1

n − 2
c + δ

k − 1

n − 2
a, (3)

which is the expected utility of choosing A, and

(1 − δ)d + δ
n − k − 1

n − 2
b + δ

k − 1

n − 2
d, (4)

which is the expected utility of choosing B.
If (3) is larger than or equal to (4), then A can be chosen by best response, increasing

the number of agents choosing A from k to k + 1. We observe that, if (3) is larger than
or equal to (4) when k agents choose A, then this holds a fortiori when the number of
such agents is k + 1. Hence, the stochastic potential ρu

A is given by the minimum k
such that (3) is larger than or equal to (4).

By means of simple algebra we obtain:

ρu
A =

{
1 if δ ≤ a−d

a−d+b−c ,

1 +
⌈(

1 − a−d
δ(a−d+b−c)

)
(n − 2)

⌉
if δ > a−d

a−d+b−c ,
(5)

where 	·
 denotes the ceiling function.
With an analogous reasoning, we can derive an expression for the stochastic poten-

tial of convention B under uniform mistakes, which we denote by ρu
B :

ρu
B =

{
1 if δ ≤ b−c

a−d+b−c ,

1 +
⌈(

1 − b−c
δ(a−d+b−c)

)
(n − 2)

⌉
if δ > b−c

a−d+b−c .
(6)

We now compare ρu
A with ρu

B to determinewhich conventions are stochastically stable.
If 0 < τ ≤ τ̃m , then 0 < δ < τ̃m since δ < τ . Hence ρu

A = ρu
B = 1, which means

that convention A and convention B are both stochastically stable. If τ̃m < τ ≤ τ̃M ,
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then τ̃m < δ < τ̃M for n sufficiently large, since δ < τ and limn→+∞ δ = τ . Suppose
that A is the risk-dominant action and, hence, (b − c)/(a − d + b − c) < δ <

(a − d)/(a − d + b − c). Therefore ρu
A = 1 < ρu

B , and so only convention A is
stochastically stable. By the same token, if B is the risk-dominant action then it is the
only stochastically stable convention. Finally, consider τ̃M < τ ≤ 1, which implies
τ̃M < δ < 1 if n is large enough (for reasons analogous to those given above). We
observe that, for n sufficiently large, the following difference,

ρu
B − ρu

A =
(

(a − d) − (b − c)

δ(a − d + b − c)

)
(n − 2), (7)

is strictly greater than 1 if A is the risk-dominant action, implying that convention A is
the only stochastically stable convention. By the same token, if B is the risk-dominant
action then it is the only stochastically stable convention. ��

Proof of Proposition 2

Proof The determination of the stochastic potential of convention A under payoff-
dependent mistakes, which we denote by ρ

p
A, proceeds as for the case with uniform

mistakes considered in the proof of Proposition 1, with a few adjustments. We note
that the path with minimum total resistance to move from convention B to convention
A requires that mistakes are made, if possible, by agents who are matched to someone
already choosing A (which is always possible but for the first mistake) and also that
mistakes are made sequentially; the reason is that the expected loss of choosing A
is lower for an agent linked to someone choosing A, and it decreases in the number
of agents choosing A. Hence, the first mistake is weighted by f (b − c), since b − c
is the payoff loss when A is chosen instead of B. Moreover, each of the following
mistakes, until the threshold of ρu

A agents choosing A is reached, is weighted by

f
(

δ(n−k−1)
n−2 (b − c) −

[
1 − δ(n−k−1)

n−2

]
(a − d)

)
, where the argument of function f is

the expected loss of choosing A instead of B when k agents are choosing A, and the
current partner is choosing A. Therefore:

ρ
p
A =

⎧
⎪⎪⎨

⎪⎪⎩

f (b − c) if δ ≤ a−d
a−d+b−c ,

f (b − c)+
ρu
A−1∑

k=1

f

(
δ(n − k − 1)

n − 2
(b − c) −

[
1 − δ(n − k − 1)

n − 2

]
(a − d)

)
if δ > a−d

a−d+b−c .

The stochastic potential of convention B under payoff-dependent mistakes, which
we denote by ρ

p
B , is obtained similarly, considering what done for ρu

B and adjusting
the weights of mistakes analogously:

ρ
p
B =

⎧
⎪⎪⎨

⎪⎪⎩

f (a − d) if δ ≤ b−c
a−d+b−c ,

f (a − d)+
ρu
B−1∑

k=1

f

(
δ(n − k − 1)

n − 2
(a − d) −

[
1 − δ(n − k − 1)

n − 2

]
(b − c)

)
if δ > b−c

a−d+b−c .

We compare ρ
p
A with ρ

p
B to determine which conventions are stochastically stable.

Suppose that A is the risk-dominant action,a−d > b−c. Since f is a strictly increasing
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function, and noting that ρu
A ≤ ρu

B always, we can conclude that ρ
p
A < ρ

p
B , which

means that convention A is the unique stochastically stable convention irrespectively
of δ, and hence, for every τ ∈ (0, 1]. If, instead, B is assumed to be the risk-dominant
action, then a−d < b−c, andwe obtain that convention B is the unique stochastically
stable convention for every τ ∈ (0, 1]. ��

Proof of Proposition 3

Proof The determination of the stochastic potential of convention Awhenmistakes are
condition-dependent, which we denote by ρc

A, proceeds as for the case with uniform
mistakes considered in the proof of Proposition 1, with a few adjustments. We note
that the path with minimum total resistance to move from convention B to convention
A requires that mistakes are made, if possible, by agents who are matched to someone
already choosing A (which is always possible but for the first mistake); the reason is
that the resistance to mistake of an agent decreases with decreasing payoff currently
earned by the agent, and a miscoordinating agent earns the lowest payoff. Hence, the
first mistake is weighted by g(b), since b is the payoff earned by every agent when all
agents choose B. Moreover, each of the following mistakes, until the threshold of ρu

A
agents choosing A is reached, is weighted by g(d), since d is the payoff earned by an
agent playing B who is matched with an agent playing A. Therefore:

ρc
A =

{
g(b) if δ ≤ a−d

a−d+b−c ,

g(b) + g(d)(ρu
A − 1) if δ > a−d

a−d+b−c .
(8)

The stochastic potential of convention B under condition-dependent mistakes,
which we denote by ρc

B , is obtained similarly, considering what done for ρu
B and

adjusting the weights of mistakes analogously:

ρc
B =

{
g(a) if δ ≤ b−c

a−d+b−c ,

g(a) + g(c)(ρu
B − 1) if δ > b−c

a−d+b−c .
(9)

We now compare ρc
A with ρc

B to determine which conventions are stochastically
stable. If 0 < τ ≤ τ̃m , then 0 < δ < τ̃m since δ < τ ; hence, ρc

A = g(b) > g(a) = ρc
B ,

since g is a strictly increasing function and b > a, and so convention B is the unique
stochastically stable convention.

We now consider the case where τ̃m < τ ≤ τ̃M , which implies τ̃m < δ < τ̃M for
n sufficiently large, since δ < τ and limn→+∞ δ = τ . Suppose that A is the risk-
dominant action and, hence, (b− c)/(a − d + b− c) < δ < (a − d)/(a − d + b− c).
Therefore, we have that ρc

A = g(b) and ρc
B = g(a) + g(c)(ρu

B − 1). Since ρu
B grows

unboundedly in n, we can conclude that convention A is the unique stochastically
stable convention when n is large enough. If, instead, B is assumed to be the risk-
dominant action, then by the same token ρc

B = g(a) and ρc
A = g(b) + g(d)(ρu

A − 1),
and we obtain that convention B is the unique stochastically stable convention.
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Finally, we consider the case where τ̃M < τ ≤ 1, which implies τ̃M < δ < 1 if
n is large enough (for reasons analogous to those given above). Taking the difference
between (8) and (9), and considering n sufficiently large, we can write

ρc
A − ρc

B < (>) 0 ⇐⇒ g(c)

g(d)
> (<)

ρu
A

ρu
B

, (10)

since both ρu
A and ρu

B grow unboundedly when n → ∞. By using (5) and (6) to
substitute for ρu

A and ρu
B , and noting that limn→+∞ δ = τ , we obtain

ρc
A − ρc

B < (>) 0 ⇐⇒ g(c)

g(d)
> (<)

τ(a − d + b − c) − (a − d)

τ (a − d + b − c) − (b − c)
= β(τ). (11)

Therefore, g(c)/g(d) > (<)β(τ) implies that ρc
A < (>) ρc

B , and hence, convention
A (B) is the unique stochastically stable convention. ��
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