In this paper we prove that, for any natural number n, the ideal generated by n slice regular functions f_1 , . . . , f_n having no common zeros concides with the entire ring of slice regular functions. The proof required the study of the non-commutative syzygies of a vector of regular functions, that manifest a different character when compared with their complex counterparts.

Ideals of regular functions of a quaternionic variable / Gentili, Graziano; Sarfatti, Giulia; Struppa, Daniele C.. - In: MATHEMATICAL RESEARCH LETTERS. - ISSN 1073-2780. - STAMPA. - 23:(2016), pp. 1645-1663. [10.4310/MRL.2016.v23.n6.a4]

Ideals of regular functions of a quaternionic variable

GENTILI, GRAZIANO;SARFATTI, GIULIA;
2016

Abstract

In this paper we prove that, for any natural number n, the ideal generated by n slice regular functions f_1 , . . . , f_n having no common zeros concides with the entire ring of slice regular functions. The proof required the study of the non-commutative syzygies of a vector of regular functions, that manifest a different character when compared with their complex counterparts.
2016
23
1645
1663
Gentili, Graziano; Sarfatti, Giulia; Struppa, Daniele C.
File in questo prodotto:
File Dimensione Formato  
IdealsPub.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 167.98 kB
Formato Adobe PDF
167.98 kB Adobe PDF   Richiedi una copia
AAM-MRL-2016.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 315.29 kB
Formato Adobe PDF
315.29 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1001501
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact