In this paper we prove a local Carleman estimate for second order elliptic equations with a general anisotropic Lipschitz coefficients having a jump at an interface. Our approach does not rely on the techniques of microlocal analysis. We make use of the elementary method so that we are able to impose almost optimal assumptions on the coefficients and, consequently, the interface.

Carleman estimate for second order elliptic equations with Lipschitz leading coefficients and jumps at an interface / Cristo, M. Di; Francini, E.; Lin, C.-L.; Vessella, S.; Wang, J.-N.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 108:(2017), pp. 163-206. [10.1016/j.matpur.2016.10.015]

Carleman estimate for second order elliptic equations with Lipschitz leading coefficients and jumps at an interface

FRANCINI, ELISA;VESSELLA, SERGIO;
2017

Abstract

In this paper we prove a local Carleman estimate for second order elliptic equations with a general anisotropic Lipschitz coefficients having a jump at an interface. Our approach does not rely on the techniques of microlocal analysis. We make use of the elementary method so that we are able to impose almost optimal assumptions on the coefficients and, consequently, the interface.
2017
108
163
206
Goal 17: Partnerships for the goals
Cristo, M. Di; Francini, E.; Lin, C.-L.; Vessella, S.; Wang, J.-N.
File in questo prodotto:
File Dimensione Formato  
dicristofrancinilinvessellawang2017.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 636.96 kB
Formato Adobe PDF
636.96 kB Adobe PDF   Richiedi una copia
3-F_Dc_L_V_W_versione-referata.pdf

accesso aperto

Descrizione: pdf
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 200.29 kB
Formato Adobe PDF
200.29 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1002456
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact