In this paper we prove a local Carleman estimate for second order elliptic equations with a general anisotropic Lipschitz coefficients having a jump at an interface. Our approach does not rely on the techniques of microlocal analysis. We make use of the elementary method so that we are able to impose almost optimal assumptions on the coefficients and, consequently, the interface.
Carleman estimate for second order elliptic equations with Lipschitz leading coefficients and jumps at an interface / Cristo, M. Di; Francini, E.; Lin, C.-L.; Vessella, S.; Wang, J.-N.. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 108:(2017), pp. 163-206. [10.1016/j.matpur.2016.10.015]
Carleman estimate for second order elliptic equations with Lipschitz leading coefficients and jumps at an interface
FRANCINI, ELISA;VESSELLA, SERGIO;
2017
Abstract
In this paper we prove a local Carleman estimate for second order elliptic equations with a general anisotropic Lipschitz coefficients having a jump at an interface. Our approach does not rely on the techniques of microlocal analysis. We make use of the elementary method so that we are able to impose almost optimal assumptions on the coefficients and, consequently, the interface.File | Dimensione | Formato | |
---|---|---|---|
dicristofrancinilinvessellawang2017.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
636.96 kB
Formato
Adobe PDF
|
636.96 kB | Adobe PDF | Richiedi una copia |
3-F_Dc_L_V_W_versione-referata.pdf
accesso aperto
Descrizione: pdf
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
200.29 kB
Formato
Adobe PDF
|
200.29 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.