We characterize all the solutions of the heat equation that have their (spatial) equipotential surfaces which do not vary with the time. Such solutions are either isoparametric or split in space-time. The result gives a final answer to a problem raised by M. S. Klamkin, extended by G. Alessandrini, and that was named the {it Matzoh Ball Soup Problem} by L. Zalcman. Similar results can also be drawn for a class of quasi-linear parabolic partial differential equations with coefficients which are homogeneous functions of the gradient variable. This class contains the (isotropic or anisotropic) evolution p-Laplace and normalized p-Laplace equations.

The Matzoh Ball Soup problem: a complete characterization / Magnanini, Rolando; Marini, Michele. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 131:(2016), pp. 170-181. [10.1016/j.na.2015.06.022]

The Matzoh Ball Soup problem: a complete characterization

MAGNANINI, ROLANDO;
2016

Abstract

We characterize all the solutions of the heat equation that have their (spatial) equipotential surfaces which do not vary with the time. Such solutions are either isoparametric or split in space-time. The result gives a final answer to a problem raised by M. S. Klamkin, extended by G. Alessandrini, and that was named the {it Matzoh Ball Soup Problem} by L. Zalcman. Similar results can also be drawn for a class of quasi-linear parabolic partial differential equations with coefficients which are homogeneous functions of the gradient variable. This class contains the (isotropic or anisotropic) evolution p-Laplace and normalized p-Laplace equations.
2016
131
170
181
Magnanini, Rolando; Marini, Michele
File in questo prodotto:
File Dimensione Formato  
ReprintNATMA2016.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 652.82 kB
Formato Adobe PDF
652.82 kB Adobe PDF
Arx1505.02638v1.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 191.16 kB
Formato Adobe PDF
191.16 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1003569
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact