The cyanobacteria are the most important prokaryotic primary producers on Earth, inhabiting a great diversity of aquatic and terrestrial environments exposed to light. However, the evolutionary forces leading to their divergence and speciation remain largely enigmatic compared to macroorganisms due to their prokaryotic nature, including vast population sizes, and largely asexual reproduction. The advent of modern molecular techniques has facilitated an understanding of the important factors shaping cyanobacterial evolution, including horizontal gene transfer and homologous recombination. We review the forces shaping the evolution of cyanobacteria and discuss the role of cohesive forces on speciation. Further, while myriad species concepts and definitions are currently used, only a limited subset might be applied to cyanobacteria due to their asexual reproduction. Additionally, concepts based solely on phenotypes provide insufficient resolution. A monophyletic species concept which is universal may be ideal for cyanobacteria. Actual identification of the cyanobacteria is difficult due to cryptic diversity, lack of morphological variability, and frequent convergent evolutionary events. Thus, applied molecular techniques such as DNA barcoding will be useful for identifications of environmental samples. Lastly, we show that the real biodiversity of the cyanobacteria is widely underestimated, due in part to low sampling efforts, sensitivity to the molecular markers employed, and the species definitions employed by researchers. In conclusion, we anticipate a rapid increase in cyanobacterial taxa described and large revisions of the system in the future as scientists adopt a common approach to cyanobacterial systematics.

Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification / Dvořák, Petr; Poulíčková, Aloisie; Hašler, Petr; Belli, Mattia; Casamatta, Dale A.; Papini, Alessio. - In: BIODIVERSITY AND CONSERVATION. - ISSN 0960-3115. - ELETTRONICO. - 24:(2015), pp. 739-757. [10.1007/s10531-015-0888-6]

Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification

BELLI, MATTIA;PAPINI, ALESSIO
2015

Abstract

The cyanobacteria are the most important prokaryotic primary producers on Earth, inhabiting a great diversity of aquatic and terrestrial environments exposed to light. However, the evolutionary forces leading to their divergence and speciation remain largely enigmatic compared to macroorganisms due to their prokaryotic nature, including vast population sizes, and largely asexual reproduction. The advent of modern molecular techniques has facilitated an understanding of the important factors shaping cyanobacterial evolution, including horizontal gene transfer and homologous recombination. We review the forces shaping the evolution of cyanobacteria and discuss the role of cohesive forces on speciation. Further, while myriad species concepts and definitions are currently used, only a limited subset might be applied to cyanobacteria due to their asexual reproduction. Additionally, concepts based solely on phenotypes provide insufficient resolution. A monophyletic species concept which is universal may be ideal for cyanobacteria. Actual identification of the cyanobacteria is difficult due to cryptic diversity, lack of morphological variability, and frequent convergent evolutionary events. Thus, applied molecular techniques such as DNA barcoding will be useful for identifications of environmental samples. Lastly, we show that the real biodiversity of the cyanobacteria is widely underestimated, due in part to low sampling efforts, sensitivity to the molecular markers employed, and the species definitions employed by researchers. In conclusion, we anticipate a rapid increase in cyanobacterial taxa described and large revisions of the system in the future as scientists adopt a common approach to cyanobacterial systematics.
2015
24
739
757
Dvořák, Petr; Poulíčková, Aloisie; Hašler, Petr; Belli, Mattia; Casamatta, Dale A.; Papini, Alessio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1003646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 121
  • ???jsp.display-item.citation.isi??? 105
social impact