We report a comprehensive study of the spontaneous magnetization reversal (MRV) performed on the disordered polycrystalline perovskite BiFe0.5Mn0.5O3, an intriguing compound synthesized in high pressure–high temperature conditions. In disordered systems, the origin of MRV is not completely clarified, yet. In BiFe0.5Mn0.5O3, compositional disorder involves the ions on the B-site of the perovskite determining the presence of mesoscopic clusters, characterized by high concentrations of iron or manganese and thus by different resultant magnetization. This leads to the observation of two singular fields H1 and H2 dependent on the degree of inhomogeneity, unpredictably changing from sample to sample due to synthesis effects. These fields separate different magnetic responses of the system; for applied fields H < H1, the Fe and Mn clusters weakly interact in a competitive way, giving rise to MRV, while for an intermediate field regime the energy of this weak interaction becomes comparable to the energy of the system under field application. As a consequence, the zero field cooled magnetization thermal evolution depends on the sample degree of inhomogeneity. In this field regime, applied field Mössbauer spectroscopy indicates that the iron rich clusters are highly polarized by the field, while the largest part of the material, consisting of AFM clusters characterized by axial anisotropy and uncompensated moments, shows soft or hard magnetism depending on T. Above the higher singular field, the M(T) curves show the trend expected for a classical antiferromagnetic material and the competitive character is suppressed. The MRV phenomenon results to be highly sensitive on both the thermal and magnetic measurement conditions; for this reason the present work proposes a characterization strategy that in principle has a large applicability in the study of disordered perovskites showing similar phenomenology.

Field effects on spontaneous magnetization reversal of bulk BiFe0.5Mn0.5O3, an effective strategy for the study of magnetic disordered systems / Davide Delmonte1, 2 Francesco Mezzadri3 Chiara Pernechele1; Gilioli, Edmondo; Calestani, Gianluca; Cabassi, Riccardo; Bolzoni, Fulvio; Spina, Gabriele; Marco, Lantieri; Massimo, Solzi. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - STAMPA. - 27:(2015), pp. 286002-286011. [10.1088/0953-8984/27/28/286002]

Field effects on spontaneous magnetization reversal of bulk BiFe0.5Mn0.5O3, an effective strategy for the study of magnetic disordered systems

SPINA, GABRIELE;LANTIERI, MARCO;
2015

Abstract

We report a comprehensive study of the spontaneous magnetization reversal (MRV) performed on the disordered polycrystalline perovskite BiFe0.5Mn0.5O3, an intriguing compound synthesized in high pressure–high temperature conditions. In disordered systems, the origin of MRV is not completely clarified, yet. In BiFe0.5Mn0.5O3, compositional disorder involves the ions on the B-site of the perovskite determining the presence of mesoscopic clusters, characterized by high concentrations of iron or manganese and thus by different resultant magnetization. This leads to the observation of two singular fields H1 and H2 dependent on the degree of inhomogeneity, unpredictably changing from sample to sample due to synthesis effects. These fields separate different magnetic responses of the system; for applied fields H < H1, the Fe and Mn clusters weakly interact in a competitive way, giving rise to MRV, while for an intermediate field regime the energy of this weak interaction becomes comparable to the energy of the system under field application. As a consequence, the zero field cooled magnetization thermal evolution depends on the sample degree of inhomogeneity. In this field regime, applied field Mössbauer spectroscopy indicates that the iron rich clusters are highly polarized by the field, while the largest part of the material, consisting of AFM clusters characterized by axial anisotropy and uncompensated moments, shows soft or hard magnetism depending on T. Above the higher singular field, the M(T) curves show the trend expected for a classical antiferromagnetic material and the competitive character is suppressed. The MRV phenomenon results to be highly sensitive on both the thermal and magnetic measurement conditions; for this reason the present work proposes a characterization strategy that in principle has a large applicability in the study of disordered perovskites showing similar phenomenology.
2015
27
286002
286011
Davide Delmonte1, 2 Francesco Mezzadri3 Chiara Pernechele1; Gilioli, Edmondo; Calestani, Gianluca; Cabassi, Riccardo; Bolzoni, Fulvio; Spina, Gabriele...espandi
File in questo prodotto:
File Dimensione Formato  
0953-8984_27_28_286002.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1003766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact