Morphine-induced hyperalgesia is a pharmacological phenomenon often hindering its prolonged applications in the clinic. It has been shown that systemic administration of morphine induced a hyperalgesic response at an extremely low dose. Extracellular signal-regulated kinase (ERK) pathway contributes to pain sensitization, and its phosphorylation under pain conditions results in the induction and maintenance of pain hypersensitivity. The present study was designed to determine whether low dose morphine treatment in mice could influence the spinal activity of ERK. The data showed that morphine (1µg/kg) induced a marked increase in ERK phosphorylation. Intrathecal pre-treatment with a selective mitogen-activated and extracellular signal-regulated kinase (MEK) inhibitor PD98059, attenuated morphine-associated thermal hyperalgesia. Morphine exposure increased phosphorylation of c-JUN, that was prevented by the inhibition of ERK pathway. In addition, double immunofluorescence studies revealed that, p-ERK and p-c-JUN are localized on neurons of the spinal dorsal horn expressing µ receptors. These data suggest that ERK contributes to the morphine-induced hyperalgesia by regulating the activation of c-JUN.

Inhibition of spinal ERK1/2-c-JUN signaling pathway counteracts the development of low doses morphine-induced hyperalgesia / Sanna, Maria Domenica; Mello, Tommaso; Ghelardini, Carla; Galeotti, Nicoletta. - In: EUROPEAN JOURNAL OF PHARMACOLOGY. - ISSN 0014-2999. - STAMPA. - 764:(2015), pp. 271-277-277. [10.1016/j.ejphar.2015.07.022]

Inhibition of spinal ERK1/2-c-JUN signaling pathway counteracts the development of low doses morphine-induced hyperalgesia

SANNA, MARIA DOMENICA;MELLO, TOMMASO;GHELARDINI, CARLA;GALEOTTI, NICOLETTA
2015

Abstract

Morphine-induced hyperalgesia is a pharmacological phenomenon often hindering its prolonged applications in the clinic. It has been shown that systemic administration of morphine induced a hyperalgesic response at an extremely low dose. Extracellular signal-regulated kinase (ERK) pathway contributes to pain sensitization, and its phosphorylation under pain conditions results in the induction and maintenance of pain hypersensitivity. The present study was designed to determine whether low dose morphine treatment in mice could influence the spinal activity of ERK. The data showed that morphine (1µg/kg) induced a marked increase in ERK phosphorylation. Intrathecal pre-treatment with a selective mitogen-activated and extracellular signal-regulated kinase (MEK) inhibitor PD98059, attenuated morphine-associated thermal hyperalgesia. Morphine exposure increased phosphorylation of c-JUN, that was prevented by the inhibition of ERK pathway. In addition, double immunofluorescence studies revealed that, p-ERK and p-c-JUN are localized on neurons of the spinal dorsal horn expressing µ receptors. These data suggest that ERK contributes to the morphine-induced hyperalgesia by regulating the activation of c-JUN.
2015
764
271-277
277
Sanna, Maria Domenica; Mello, Tommaso; Ghelardini, Carla; Galeotti, Nicoletta
File in questo prodotto:
File Dimensione Formato  
149. EJP morphine.pdf

Accesso chiuso

Descrizione: Morphine-induced hyperalgesia is a pharmacological phenomenon often hindering its prolonged applications in the clinic. It has been shown that systemic administration of morphine induced a hyperalgesic response at an extremely low dose. Extracellular signal-regulated kinase (ERK) pathway contributes to pain sensitization, and its phosphorylation under pain conditions results in the induction and maintenance of pain hypersensitivity. The present study was designed to determine whether low dose morphine treatment in mice could influence the spinal activity of ERK. The data showed that morphine (1µg/kg) induced a marked increase in ERK phosphorylation. Intrathecal pre-treatment with a selective mitogen-activated and extracellular signal-regulated kinase (MEK) inhibitor PD98059, attenuated morphine-associated thermal hyperalgesia. Morphine exposure increased phosphorylation of c-JUN, that was prevented by the inhibition of ERK pathway. In addition, double immunofluorescence studies revealed that, p-ERK and p-c-JUN are localized on neurons of the spinal dorsal horn expressing µ receptors. These data suggest that ERK contributes to the morphine-induced hyperalgesia by regulating the activation of c-JUN.
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 3.46 MB
Formato Adobe PDF
3.46 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1003999
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact