A simulation-based approach is proposed to estimate free energy differences between configurational states A and B, defined in terms of collective coordinates of the molecular system. The computational protocol is organized into three stages that can be carried on simultaneously. Two of them consist of independent simulations aimed at sampling, in turn, A and B states. In order to limit the evolution of the system around A and B, biased sampling simulations such as umbrella sampling can be employed. These simulations allow us to estimate local configuration integrals associated with A and B, which can be viewed as vibrational contributions to the free energy. Free energy evaluation is completed by the linking-path stage, in which the potential of mean force difference is estimated between two arbitrary points of the configurational surface, located the first around A and the second around B. The linking path in the space of the collective coordinates is arbitrary and can be computed with any method, starting from adaptive biasing potential/force approaches to nonequilibrium techniques. As an illustrative example, we present the calculation of free energy differences between conformational states of the alanine dipeptide in the space of backbone dihedral angles. The basic advantage of this method, that we term “path-linked domains” scheme, is to prevent accurate calculation of the whole free energy hypersurface in the space of the collective coordinates, thus limiting the statistical sampling to a minimum. Path-linked domains schemes can be applied to a variety of biochemical processes, such as protein−ligand complexation or folding-unfolding interconversion.

Computing Free Energy Differences of Configurational Basins / Giovannelli, Edoardo; Cardini, Gianni; Gellini, Cristina; Pietraperzia, Giangaetano; Chelli, Riccardo. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - STAMPA. - 11:(2015), pp. 3561-3571. [10.1021/acs.jctc.5b00248]

Computing Free Energy Differences of Configurational Basins

GIOVANNELLI, EDOARDO;CARDINI, GIANNI;GELLINI, CRISTINA;PIETRAPERZIA, GIANGAETANO;CHELLI, RICCARDO
2015

Abstract

A simulation-based approach is proposed to estimate free energy differences between configurational states A and B, defined in terms of collective coordinates of the molecular system. The computational protocol is organized into three stages that can be carried on simultaneously. Two of them consist of independent simulations aimed at sampling, in turn, A and B states. In order to limit the evolution of the system around A and B, biased sampling simulations such as umbrella sampling can be employed. These simulations allow us to estimate local configuration integrals associated with A and B, which can be viewed as vibrational contributions to the free energy. Free energy evaluation is completed by the linking-path stage, in which the potential of mean force difference is estimated between two arbitrary points of the configurational surface, located the first around A and the second around B. The linking path in the space of the collective coordinates is arbitrary and can be computed with any method, starting from adaptive biasing potential/force approaches to nonequilibrium techniques. As an illustrative example, we present the calculation of free energy differences between conformational states of the alanine dipeptide in the space of backbone dihedral angles. The basic advantage of this method, that we term “path-linked domains” scheme, is to prevent accurate calculation of the whole free energy hypersurface in the space of the collective coordinates, thus limiting the statistical sampling to a minimum. Path-linked domains schemes can be applied to a variety of biochemical processes, such as protein−ligand complexation or folding-unfolding interconversion.
2015
11
3561
3571
Giovannelli, Edoardo; Cardini, Gianni; Gellini, Cristina; Pietraperzia, Giangaetano; Chelli, Riccardo
File in questo prodotto:
File Dimensione Formato  
J.Chem.Theory.Comput.-y15_v11_p3561.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 3.01 MB
Formato Adobe PDF
3.01 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1004767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact