Various results are proved giving lower bounds for the mth intrinsic volume Vm(K) of a compact convex set K in Rn, in terms of the mth intrinsic volumes of its projections on the coordinate hyperplanes (or its intersections with the coordinate hyperplanes). The bounds are sharp when m = 1 and m = n - 1. These are reverse (or dual, respectively) forms of the Loomis-Whitney inequality and versions of it that apply to intrinsic volumes. For the intrinsic volume V1(K), which corresponds to mean width, the inequality obtained confirms a conjecture of Betke and McMullen made in 1983.

Reverse and dual Loomis-Whitney-type inequalities / Campi, Stefano; Gardner, Richard J.; Gronchi, Paolo. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - STAMPA. - 368:(2016), pp. 5093-5124. [10.1090/tran/6668]

Reverse and dual Loomis-Whitney-type inequalities

GRONCHI, PAOLO
2016

Abstract

Various results are proved giving lower bounds for the mth intrinsic volume Vm(K) of a compact convex set K in Rn, in terms of the mth intrinsic volumes of its projections on the coordinate hyperplanes (or its intersections with the coordinate hyperplanes). The bounds are sharp when m = 1 and m = n - 1. These are reverse (or dual, respectively) forms of the Loomis-Whitney inequality and versions of it that apply to intrinsic volumes. For the intrinsic volume V1(K), which corresponds to mean width, the inequality obtained confirms a conjecture of Betke and McMullen made in 1983.
2016
368
5093
5124
Campi, Stefano; Gardner, Richard J.; Gronchi, Paolo
File in questo prodotto:
File Dimensione Formato  
Reverse and dual Loomis-Whitney-type inequalities.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 451.72 kB
Formato Adobe PDF
451.72 kB Adobe PDF   Richiedi una copia
Reverse and dual Loomis-Whitney-type inequalities.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 410.76 kB
Formato Adobe PDF
410.76 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1005526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact