We prove an epiperimetric inequality for the thin obstacle problem, thus extending the pioneering results by Weiss on the classical obstacle problem (Invent. Math., 138 (1999), no. 1, 23–50). This inequality provides the means to study the rate of converge of the rescaled solutions to their limits, as well as the regularity properties of the free boundary.

An epiperimetric inequality for the thin obstacle problem / Focardi, Matteo; Spadaro, Emanuele. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - STAMPA. - 21:(2016), pp. 153-200.

An epiperimetric inequality for the thin obstacle problem

FOCARDI, MATTEO;
2016

Abstract

We prove an epiperimetric inequality for the thin obstacle problem, thus extending the pioneering results by Weiss on the classical obstacle problem (Invent. Math., 138 (1999), no. 1, 23–50). This inequality provides the means to study the rate of converge of the rescaled solutions to their limits, as well as the regularity properties of the free boundary.
2016
21
153
200
Focardi, Matteo; Spadaro, Emanuele
File in questo prodotto:
File Dimensione Formato  
Focardi-Spadaro_ADE.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 474.42 kB
Formato Adobe PDF
474.42 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1006159
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 25
social impact