The design of nanostructured drug delivery systems (DDS) that improve the efficacy of therapeutic principles by enhancing their biocompatibility, bioavailability and targeting, has been the focus of extensive research over the past years. Of particular relevance in this field is the development of multifunctional architectures that can deliver different therapeutics or diagnostic agents and release them in a controlled way. In this study we report on the design, preparation and characterization of a DDS where hydrophobic Fe3O4 magnetic nanoparticles (NPs) are included in the bilayer of bicontinuous cubic lipid nanoparticles of Glyceryl Monooleate (GMO). The "magnetocubosomes" are characterized and investigated in terms of their ability to encapsulate and release both hydrophilic and hydrophobic model drugs. For the first time Fluorescence Correlation Spectroscopy (FCS) is used to study the diffusion of encapsulated molecules inside the bicontinuous cubic phase and to monitor their release from the matrix towards the aqueous phase. In addition, we show with the same technique that magnetocubosomes are responsive to a low frequency alternating magnetic field (LF-AMF), which acts as an external trigger to boost the release of model drugs confined in the cubic phase. Magnetocubosomes, reported for the first time in this paper, represent a novel biocompatible, multifunctional and responsive DDS.

Magnetocubosomes for the delivery and controlled release of therapeutics / Montis, Costanza; Castroflorio, Benedetta; Mendozza, Marco; Salvatore, Annalisa; Berti, Debora; Baglioni, Piero. - In: JOURNAL OF COLLOID AND INTERFACE SCIENCE. - ISSN 0021-9797. - STAMPA. - 449:(2015), pp. 317-26-326. [10.1016/j.jcis.2014.11.056]

Magnetocubosomes for the delivery and controlled release of therapeutics

MONTIS, COSTANZA;CASTROFLORIO, BENEDETTA;MENDOZZA, MARCO;SALVATORE, ANNALISA;BERTI, DEBORA;BAGLIONI, PIERO
2015

Abstract

The design of nanostructured drug delivery systems (DDS) that improve the efficacy of therapeutic principles by enhancing their biocompatibility, bioavailability and targeting, has been the focus of extensive research over the past years. Of particular relevance in this field is the development of multifunctional architectures that can deliver different therapeutics or diagnostic agents and release them in a controlled way. In this study we report on the design, preparation and characterization of a DDS where hydrophobic Fe3O4 magnetic nanoparticles (NPs) are included in the bilayer of bicontinuous cubic lipid nanoparticles of Glyceryl Monooleate (GMO). The "magnetocubosomes" are characterized and investigated in terms of their ability to encapsulate and release both hydrophilic and hydrophobic model drugs. For the first time Fluorescence Correlation Spectroscopy (FCS) is used to study the diffusion of encapsulated molecules inside the bicontinuous cubic phase and to monitor their release from the matrix towards the aqueous phase. In addition, we show with the same technique that magnetocubosomes are responsive to a low frequency alternating magnetic field (LF-AMF), which acts as an external trigger to boost the release of model drugs confined in the cubic phase. Magnetocubosomes, reported for the first time in this paper, represent a novel biocompatible, multifunctional and responsive DDS.
2015
449
317-26
326
Montis, Costanza; Castroflorio, Benedetta; Mendozza, Marco; Salvatore, Annalisa; Berti, Debora; Baglioni, Piero
File in questo prodotto:
File Dimensione Formato  
2015_JCIS_Cubosomes.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1006540
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 45
social impact