The aim of this work was to develop a topical formulation with improved permeation properties of acyclovir. Ursodeoxycholic (UDC) and dehydrocholic (DHC) acids were tested as potential enhancers, alone or in combination with different aminoacids. Equimolar binary and ternary systems of acyclovir with cholic acids and basic, hydrophilic or hydrophobic aminoacids were prepared by co-grinding in a high vibrational micromill. Differential scanning calorimetry (DSC) was used to characterize the solid state of these systems, while their permeation properties were evaluated in vitro through a lipophilic artificial membrane. UDC was more than 2 times more effective than DHC in improving drug AUC and permeation rate. As for the ternary systems drug-UDC-aminoacid, only the combined use of L-lysine with UDC acid produced an evident synergistic effect in enhancing drug permeation properties, enabling an almost 3 and 8 times AUC increase compared to the binary UDC system or the pure drug, respectively. The best systems were selected for the development of topical cream formulations, adequately characterized and tested for in vitro drug permeation properties and stability on storage. The better performance revealed by acyclovir-UDC-L-lysine was mainly attributed to the formation of a more permeable activated system induced by the multicomponent co-grinding process

Combined use of bile acids and aminoacids to improve permeation properties of acyclovir / Cirri, M.; Maestrelli, F.; Mennini, N.; Mura, P.. - In: INTERNATIONAL JOURNAL OF PHARMACEUTICS. - ISSN 0378-5173. - ELETTRONICO. - 490:(2015), pp. 351-359. [10.1016/j.ijpharm.2015.05.052]

Combined use of bile acids and aminoacids to improve permeation properties of acyclovir

CIRRI, MARZIA;MAESTRELLI, FRANCESCA;MENNINI, NATASCIA;MURA, PAOLA ANGELA
2015

Abstract

The aim of this work was to develop a topical formulation with improved permeation properties of acyclovir. Ursodeoxycholic (UDC) and dehydrocholic (DHC) acids were tested as potential enhancers, alone or in combination with different aminoacids. Equimolar binary and ternary systems of acyclovir with cholic acids and basic, hydrophilic or hydrophobic aminoacids were prepared by co-grinding in a high vibrational micromill. Differential scanning calorimetry (DSC) was used to characterize the solid state of these systems, while their permeation properties were evaluated in vitro through a lipophilic artificial membrane. UDC was more than 2 times more effective than DHC in improving drug AUC and permeation rate. As for the ternary systems drug-UDC-aminoacid, only the combined use of L-lysine with UDC acid produced an evident synergistic effect in enhancing drug permeation properties, enabling an almost 3 and 8 times AUC increase compared to the binary UDC system or the pure drug, respectively. The best systems were selected for the development of topical cream formulations, adequately characterized and tested for in vitro drug permeation properties and stability on storage. The better performance revealed by acyclovir-UDC-L-lysine was mainly attributed to the formation of a more permeable activated system induced by the multicomponent co-grinding process
2015
490
351
359
Cirri, M.; Maestrelli, F.; Mennini, N.; Mura, P.
File in questo prodotto:
File Dimensione Formato  
Cirri et al., 2015.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1006622
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact