Darrieus vertical-axis wind turbines are experiencing renewed interest from researchers and manufacturers, though their efficiencies still lag those of horizontal-axis wind turbines. A better understanding of their aerodynamics is required to improve on designs, for example through the development of more accurate low-order (e.g. blade element momentum) models. Many of these models neglect the impact of the curved paths that are followed by blades on their performance. It has been theorized that the curved streamlines of the flow impart a virtual camber and incidence on them, giving a performance analogous to a cambered blade in a rectilinear flow. To test the extent of this effect, wind tunnel experiments have been conducted in a rectilinear flow to obtain lift and drag for three airfoils: a NACA 0018 and two conformal transforms of the profile. The transformed airfoils exhibit the virtual camber that the theory predicts is imparted to a NACA 0018 when used in a Darrieus turbine with blade chord-to-turbine radius ratios, c/R, of 0.114 and 0.25. A parallel computational fluid dynamics campaign has been conducted to study the aerodynamic behavior of the same blades in curvilinear flow in Darrieus-like motion with c/R = 0.114 and 0.25, at tip–speed ratios of 2.1 and 3.1, using novel techniques to obtain blade effective angles of attack. The analysis confirms that the theory holds, with the wind tunnel results for the NACA 0018 being analogous to numerical results for the relevant cambered airfoils. In addition, turbine performance is calculated using computational fluid dynamics and a blade element momentum code, for each of the blades in turn. The computational fluid dynamics results for the NACA 0018 agree closely to blade element momentum results for the equivalent cambered airfoil where c/R = 0.25, for both turbine power and blade tangential forces. Agreement between the two methods using geometrically identical blades is poor at both the blade and turbine level for c/R = 0.25. It is concluded that when modeling a Darrieus rotor using blade element momentum methods, applying experimental data for the profile used in the turbine will yield inaccurate results if the c/R ratio is high, in such cases it is necessary to select a profile based on the virtual shape of the blades.

On the influence of virtual camber effect on airfoil polars for use in simulations of Darrieus wind turbines / Bianchini, Alessandro; Balduzzi, Francesco; Rainbird, John M.; Peiró, Joaquim; Graham, J. Michael R.; Ferrara, Giovanni; Ferrari, Lorenzo. - In: ENERGY CONVERSION AND MANAGEMENT. - ISSN 0196-8904. - ELETTRONICO. - 106:(2015), pp. 373-384. [10.1016/j.enconman.2015.09.053]

On the influence of virtual camber effect on airfoil polars for use in simulations of Darrieus wind turbines

BIANCHINI, ALESSANDRO;BALDUZZI, FRANCESCO;FERRARA, GIOVANNI;
2015

Abstract

Darrieus vertical-axis wind turbines are experiencing renewed interest from researchers and manufacturers, though their efficiencies still lag those of horizontal-axis wind turbines. A better understanding of their aerodynamics is required to improve on designs, for example through the development of more accurate low-order (e.g. blade element momentum) models. Many of these models neglect the impact of the curved paths that are followed by blades on their performance. It has been theorized that the curved streamlines of the flow impart a virtual camber and incidence on them, giving a performance analogous to a cambered blade in a rectilinear flow. To test the extent of this effect, wind tunnel experiments have been conducted in a rectilinear flow to obtain lift and drag for three airfoils: a NACA 0018 and two conformal transforms of the profile. The transformed airfoils exhibit the virtual camber that the theory predicts is imparted to a NACA 0018 when used in a Darrieus turbine with blade chord-to-turbine radius ratios, c/R, of 0.114 and 0.25. A parallel computational fluid dynamics campaign has been conducted to study the aerodynamic behavior of the same blades in curvilinear flow in Darrieus-like motion with c/R = 0.114 and 0.25, at tip–speed ratios of 2.1 and 3.1, using novel techniques to obtain blade effective angles of attack. The analysis confirms that the theory holds, with the wind tunnel results for the NACA 0018 being analogous to numerical results for the relevant cambered airfoils. In addition, turbine performance is calculated using computational fluid dynamics and a blade element momentum code, for each of the blades in turn. The computational fluid dynamics results for the NACA 0018 agree closely to blade element momentum results for the equivalent cambered airfoil where c/R = 0.25, for both turbine power and blade tangential forces. Agreement between the two methods using geometrically identical blades is poor at both the blade and turbine level for c/R = 0.25. It is concluded that when modeling a Darrieus rotor using blade element momentum methods, applying experimental data for the profile used in the turbine will yield inaccurate results if the c/R ratio is high, in such cases it is necessary to select a profile based on the virtual shape of the blades.
2015
106
373
384
Goal 7: Affordable and clean energy
Bianchini, Alessandro; Balduzzi, Francesco; Rainbird, John M.; Peiró, Joaquim; Graham, J. Michael R.; Ferrara, Giovanni; Ferrari, Lorenzo...espandi
File in questo prodotto:
File Dimensione Formato  
Manuscript_POSTPRINT.pdf

accesso aperto

Descrizione: Documento post-print
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Creative commons
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF
definitivo.pdf

Accesso chiuso

Descrizione: Virtual camber editoriale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 4.55 MB
Formato Adobe PDF
4.55 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1008155
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 89
social impact