Investigation of the use of a multimodal feature learning approach, using neural network based models such as Skip-gram and Denoising Autoencoders, to address sentiment analysis of micro-blogging content, such as Twitter short messages, that are composed by a short text and, possibly, an image.

A multimodal feature learning approach for sentiment analysis of social network multimedia / Baecchi, Claudio; Uricchio, Tiberio; Bertini, Marco; Del Bimbo, Alberto. - In: MULTIMEDIA TOOLS AND APPLICATIONS. - ISSN 1573-7721. - ELETTRONICO. - 75:(2016), pp. 2507-2525. [10.1007/s11042-015-2646-x]

A multimodal feature learning approach for sentiment analysis of social network multimedia

BAECCHI, CLAUDIO;URICCHIO, TIBERIO;BERTINI, MARCO;DEL BIMBO, ALBERTO
2016

Abstract

Investigation of the use of a multimodal feature learning approach, using neural network based models such as Skip-gram and Denoising Autoencoders, to address sentiment analysis of micro-blogging content, such as Twitter short messages, that are composed by a short text and, possibly, an image.
2016
75
2507
2525
Baecchi, Claudio; Uricchio, Tiberio; Bertini, Marco; Del Bimbo, Alberto
File in questo prodotto:
File Dimensione Formato  
published.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1008199
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 53
social impact