Investigation of the use of a multimodal feature learning approach, using neural network based models such as Skip-gram and Denoising Autoencoders, to address sentiment analysis of micro-blogging content, such as Twitter short messages, that are composed by a short text and, possibly, an image.
A multimodal feature learning approach for sentiment analysis of social network multimedia / Baecchi, Claudio; Uricchio, Tiberio; Bertini, Marco; Del Bimbo, Alberto. - In: MULTIMEDIA TOOLS AND APPLICATIONS. - ISSN 1573-7721. - ELETTRONICO. - 75:(2016), pp. 2507-2525. [10.1007/s11042-015-2646-x]
A multimodal feature learning approach for sentiment analysis of social network multimedia
BAECCHI, CLAUDIO;URICCHIO, TIBERIO;BERTINI, MARCO;DEL BIMBO, ALBERTO
2016
Abstract
Investigation of the use of a multimodal feature learning approach, using neural network based models such as Skip-gram and Denoising Autoencoders, to address sentiment analysis of micro-blogging content, such as Twitter short messages, that are composed by a short text and, possibly, an image.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
published.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.