By means of one- and two-dimensional transient infrared spectroscopy and femtosecond stimulated Raman spectroscopy we investigated the excited state dynamics of peridinin, a carbonyl carotenoid occurring in natural light harvesting complexes. The presence of singly and doubly excited states, as well as of an intramolecular charge transfer (ICT) state, make the behavior of carbonyl carotenoids in the excited state very complex. In this work, we investigated by time resolved spectroscopy the relaxation of photo-excited peridinin in solvents of different polarity and as a function of the excitation wavelength. Our experimental results show that a characteristic pattern of one- and two-dimensional infrared bands in the C=C stretching region allows monitoring the relaxation pathway. In polar solvents, moderate distortions of the molecular geometry cause a variation of the single/double carbon bond character, so that the partially ionic ICT state is largely stabilized by the solvent reorganization. After vertical photoexcitation at 400 nm of the S2 state, the off-equilibrium population moves to the S1 state with ca 175 fs time constant; from there, in less than 5 ps the non-Franck Condon ICT state is reached and, finally, the ground state is recovered in 70 ps. That the relevant excited state dynamics takes place far from the Franck Condon region is demonstrated by its noticeable dependence on the excitation wavelength.

Femtosecond transient infrared and stimulated Raman spectroscopy shed light on the relaxation mechanisms of photo-excited peridinin / Di Donato, Mariangela; Ragnoni, Elena; Lapini, Andrea; Foggi, Paolo; Hiller, Roger G.; Righini, Roberto. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - ELETTRONICO. - 142:(2015), pp. 212409-212409. [10.1063/1.4915072]

Femtosecond transient infrared and stimulated Raman spectroscopy shed light on the relaxation mechanisms of photo-excited peridinin

DI DONATO, MARIANGELA;RAGNONI, ELENA;LAPINI, ANDREA;FOGGI, PAOLO;RIGHINI, ROBERTO
2015

Abstract

By means of one- and two-dimensional transient infrared spectroscopy and femtosecond stimulated Raman spectroscopy we investigated the excited state dynamics of peridinin, a carbonyl carotenoid occurring in natural light harvesting complexes. The presence of singly and doubly excited states, as well as of an intramolecular charge transfer (ICT) state, make the behavior of carbonyl carotenoids in the excited state very complex. In this work, we investigated by time resolved spectroscopy the relaxation of photo-excited peridinin in solvents of different polarity and as a function of the excitation wavelength. Our experimental results show that a characteristic pattern of one- and two-dimensional infrared bands in the C=C stretching region allows monitoring the relaxation pathway. In polar solvents, moderate distortions of the molecular geometry cause a variation of the single/double carbon bond character, so that the partially ionic ICT state is largely stabilized by the solvent reorganization. After vertical photoexcitation at 400 nm of the S2 state, the off-equilibrium population moves to the S1 state with ca 175 fs time constant; from there, in less than 5 ps the non-Franck Condon ICT state is reached and, finally, the ground state is recovered in 70 ps. That the relevant excited state dynamics takes place far from the Franck Condon region is demonstrated by its noticeable dependence on the excitation wavelength.
2015
142
212409
212409
Di Donato, Mariangela; Ragnoni, Elena; Lapini, Andrea; Foggi, Paolo; Hiller, Roger G.; Righini, Roberto
File in questo prodotto:
File Dimensione Formato  
1.4915072.pdf

Accesso chiuso

Descrizione: articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 2.47 MB
Formato Adobe PDF
2.47 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1008588
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 18
social impact