In this study wild type Nicotiana langsdorffii plants were genetically transformed by the insertion of the rat gene (gr) encoding the glucocorticoid receptor or the rolC gene and exposed to water and heat stress. Water stress was induced for 15 days by adding 20% PEG 6000 in the growth medium, whereas the heat treatment was performed at 50 C for 2 h, after that a re-growing capability study was carried out. The plant response to stress was investigated by determining electrolyte leakage, dry weight biomass production and water content. These data were evaluated in relation to antiradical activity and concentrations of total polyphenols, selected phenolic compounds and some soluble sugars, as biochemical indicators of metabolic changes due to gene insertion and/or stress treatments. As regards the water stress, the measured physiological parameters evidenced an increasing stress level in the order rolC < gr < WT plants (e.g. about 100% and 50% electrolyte leakage increase in WT and gr samples, respectively) and complied with the biochemical pattern, which consisted in a general decrease of antiradical activity and phenolics, together with an increase in sugars. As regard heat stress, electrolyte leakage data were only in partial agreement with the re-growing capability study. In fact, according to this latter evaluation, gr was the genotype less affected by the heat shock. In this regard, sugars and especially phenolic compounds are informative of the long-term effects due to heat shock treatment.
Changes in polyphenol and sugar concentrations in wild type and genetically modified Nicotiana langsdorffii Weinmann in response to water and heat stress / Ancillotti, Claudia; Bogani, Patrizia; Biricolti, Stefano; Calistri, Elisa; Checchini, Leonardo; Ciofi, Lorenzo; Gonnelli, Cristina; Del Bubba, Massimo. - In: PLANT PHYSIOLOGY AND BIOCHEMISTRY. - ISSN 0981-9428. - STAMPA. - 97:(2015), pp. 52-61. [10.1016/j.plaphy.2015.09.012]
Changes in polyphenol and sugar concentrations in wild type and genetically modified Nicotiana langsdorffii Weinmann in response to water and heat stress
ANCILLOTTI, CLAUDIA;BOGANI, PATRIZIA;BIRICOLTI, STEFANO;CALISTRI, ELISA;CHECCHINI, LEONARDO;CIOFI, LORENZO;GONNELLI, CRISTINA;DEL BUBBA, MASSIMO
2015
Abstract
In this study wild type Nicotiana langsdorffii plants were genetically transformed by the insertion of the rat gene (gr) encoding the glucocorticoid receptor or the rolC gene and exposed to water and heat stress. Water stress was induced for 15 days by adding 20% PEG 6000 in the growth medium, whereas the heat treatment was performed at 50 C for 2 h, after that a re-growing capability study was carried out. The plant response to stress was investigated by determining electrolyte leakage, dry weight biomass production and water content. These data were evaluated in relation to antiradical activity and concentrations of total polyphenols, selected phenolic compounds and some soluble sugars, as biochemical indicators of metabolic changes due to gene insertion and/or stress treatments. As regards the water stress, the measured physiological parameters evidenced an increasing stress level in the order rolC < gr < WT plants (e.g. about 100% and 50% electrolyte leakage increase in WT and gr samples, respectively) and complied with the biochemical pattern, which consisted in a general decrease of antiradical activity and phenolics, together with an increase in sugars. As regard heat stress, electrolyte leakage data were only in partial agreement with the re-growing capability study. In fact, according to this latter evaluation, gr was the genotype less affected by the heat shock. In this regard, sugars and especially phenolic compounds are informative of the long-term effects due to heat shock treatment.File | Dimensione | Formato | |
---|---|---|---|
Plant Physiology and Biochemistry 97 (2015) 52-61.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
938.17 kB
Formato
Adobe PDF
|
938.17 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.