We show differentiability of a class of Geroch's volume functions on globally hyperbolic manifolds. Furthermore, we prove that every volume function satisfies a local anti-Lipschitz condition over causal curves, and that locally Lipschitz time functions which are locally antiLipschitz can be uniformly approximated by smooth time functions with timelike gradient. Finally, we prove that in stably causal spacetimes Hawking's time function can be uniformly approximated by smooth time functions with timelike gradient.
On differentiability of volume time functions / Chrusciel, Piotr; Grant, James; Minguzzi, Ettore. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - STAMPA. - 17:(2016), pp. 2801-2824. [10.1007/s00023-015-0448-3]
On differentiability of volume time functions
MINGUZZI, ETTORE
2016
Abstract
We show differentiability of a class of Geroch's volume functions on globally hyperbolic manifolds. Furthermore, we prove that every volume function satisfies a local anti-Lipschitz condition over causal curves, and that locally Lipschitz time functions which are locally antiLipschitz can be uniformly approximated by smooth time functions with timelike gradient. Finally, we prove that in stably causal spacetimes Hawking's time function can be uniformly approximated by smooth time functions with timelike gradient.File | Dimensione | Formato | |
---|---|---|---|
Chrusciel, Grant and Minguzzi - On differentiability of volume time functions - Ann. Henri Poincaré 17 (2016), 2801–282.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
663.15 kB
Formato
Adobe PDF
|
663.15 kB | Adobe PDF | |
1301.2909.pdf
accesso aperto
Descrizione: versione preprint arxiv
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
289.99 kB
Formato
Adobe PDF
|
289.99 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.