Given a closed symplectic manifold, we study when the Lefschetz decomposition induced by the sl(2;R)-representation yields a decomposition of the de Rham cohomology. In particular, this holds always true for the second de Rham cohomology group, or if the symplectic manifold satisfies the Hard Lefschetz Condition.

Symplectic manifolds and cohomological decomposition / Angella, Daniele; Tomassini, Adriano. - In: JOURNAL OF SYMPLECTIC GEOMETRY. - ISSN 1527-5256. - STAMPA. - 12:(2014), pp. 215-236. [10.4310/JSG.2014.v12.n2.a1]

Symplectic manifolds and cohomological decomposition

ANGELLA, DANIELE;
2014

Abstract

Given a closed symplectic manifold, we study when the Lefschetz decomposition induced by the sl(2;R)-representation yields a decomposition of the de Rham cohomology. In particular, this holds always true for the second de Rham cohomology group, or if the symplectic manifold satisfies the Hard Lefschetz Condition.
2014
12
215
236
Angella, Daniele; Tomassini, Adriano
File in questo prodotto:
File Dimensione Formato  
angella-tomassini-4.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 237.78 kB
Formato Adobe PDF
237.78 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1009015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact