In classic pulse-echo ultrasound imaging, the data acquisition rate is limited by the speed of sound. To overcome this, parallel beamforming techniques in transmit (PBT) and in receive (PBR) mode have been proposed. In particular, PBT techniques, based on the transmission of focused beams, are more suitable for harmonic imaging because they are capable of generating stronger harmonics. Recently, orthogonal frequency division multiplexing (OFDM) has been investigated as a means to obtain parallel beamformed tissue harmonic images. To date, only numerical studies and experiments in water have been performed, hence neglecting the effect of frequencydependent absorption. Here we present the first in vitro and in vivo tissue harmonic images obtained with PBT by means of OFDM, and we compare the results with classic B-mode tissue harmonic imaging. The resulting contrast-to-noise ratio, here used as a performance metric, is comparable. A reduction by 2 dB is observed for the case in which three parallel lines are reconstructed. In conclusion, the applicability of this technique to ultrasonography as a means to improve the data acquisition rate is confirmed.
In Vitro and in Vivo tissue harmonic images obtained with parallel transmit beamforming by means of orthogonal frequency division multiplexing [Correspondence] / Demi, Libertario; Ramalli, Alessandro; Giannini, Gabriele; Mischi, Massimo. - In: IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL. - ISSN 0885-3010. - ELETTRONICO. - 62:(2015), pp. 230-235. [10.1109/TUFFC.2014.006599]
In Vitro and in Vivo tissue harmonic images obtained with parallel transmit beamforming by means of orthogonal frequency division multiplexing [Correspondence]
RAMALLI, ALESSANDRO;GIANNINI, GABRIELE;
2015
Abstract
In classic pulse-echo ultrasound imaging, the data acquisition rate is limited by the speed of sound. To overcome this, parallel beamforming techniques in transmit (PBT) and in receive (PBR) mode have been proposed. In particular, PBT techniques, based on the transmission of focused beams, are more suitable for harmonic imaging because they are capable of generating stronger harmonics. Recently, orthogonal frequency division multiplexing (OFDM) has been investigated as a means to obtain parallel beamformed tissue harmonic images. To date, only numerical studies and experiments in water have been performed, hence neglecting the effect of frequencydependent absorption. Here we present the first in vitro and in vivo tissue harmonic images obtained with PBT by means of OFDM, and we compare the results with classic B-mode tissue harmonic imaging. The resulting contrast-to-noise ratio, here used as a performance metric, is comparable. A reduction by 2 dB is observed for the case in which three parallel lines are reconstructed. In conclusion, the applicability of this technique to ultrasonography as a means to improve the data acquisition rate is confirmed.File | Dimensione | Formato | |
---|---|---|---|
In vitro and in vivo tissue harmonic images obtained with PTB by means of OFDM.pdf
Accesso chiuso
Descrizione: Articolo pubblicato
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
2.07 MB
Formato
Adobe PDF
|
2.07 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.