Generalized-ensemble simulations, such as replica exchange and serial generalized-ensemble methods, are powerful simulation tools to enhance sampling of free energy landscapes in systems with high energy barriers. In these methods, sampling is enhanced through instantaneous transitions of replicas, i.e., copies of the system, between different ensembles characterized by some control parameter associated with thermodynamical variables (e.g., temperature or pressure) or collective mechanical variables (e.g., interatomic distances or torsional angles). An interesting evolution of these methodologies has been proposed by replacing the conventional instantaneous (trial) switches of replicas with noninstantaneous switches, realized by varying the control parameter in a finite time and accepting the final replica configuration with a Metropolis-like criterion based on the Crooks nonequilibrium work (CNW) theorem. Here we revise these techniques focusing on their correlation with the CNW theorem in the framework of Markovian processes. An outcome of this report is the derivation of the acceptance probability for noninstantaneous switches in serial generalized-ensemble simulations, where we show that explicit knowledge of the time dependence of the weight factors entering such simulations is not necessary. A generalized relationship of the CNW theorem is also provided in terms of the underlying equilibrium probability distribution at a fixed control parameter. Illustrative calculations on a toy model are performed with serial generalized-ensemble simulations, especially focusing on the different behavior of instantaneous and noninstantaneous replica transition schemes.
Simulations in generalized ensembles through noninstantaneous switches / Giovannelli, Edoardo; Cardini, Gianni; Chelli, Riccardo. - In: PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS. - ISSN 1539-3755. - STAMPA. - 92:(2015), pp. 043310-1-043310-10. [10.1103/PhysRevE.92.043310]
Simulations in generalized ensembles through noninstantaneous switches
GIOVANNELLI, EDOARDO;CARDINI, GIANNI;CHELLI, RICCARDO
2015
Abstract
Generalized-ensemble simulations, such as replica exchange and serial generalized-ensemble methods, are powerful simulation tools to enhance sampling of free energy landscapes in systems with high energy barriers. In these methods, sampling is enhanced through instantaneous transitions of replicas, i.e., copies of the system, between different ensembles characterized by some control parameter associated with thermodynamical variables (e.g., temperature or pressure) or collective mechanical variables (e.g., interatomic distances or torsional angles). An interesting evolution of these methodologies has been proposed by replacing the conventional instantaneous (trial) switches of replicas with noninstantaneous switches, realized by varying the control parameter in a finite time and accepting the final replica configuration with a Metropolis-like criterion based on the Crooks nonequilibrium work (CNW) theorem. Here we revise these techniques focusing on their correlation with the CNW theorem in the framework of Markovian processes. An outcome of this report is the derivation of the acceptance probability for noninstantaneous switches in serial generalized-ensemble simulations, where we show that explicit knowledge of the time dependence of the weight factors entering such simulations is not necessary. A generalized relationship of the CNW theorem is also provided in terms of the underlying equilibrium probability distribution at a fixed control parameter. Illustrative calculations on a toy model are performed with serial generalized-ensemble simulations, especially focusing on the different behavior of instantaneous and noninstantaneous replica transition schemes.File | Dimensione | Formato | |
---|---|---|---|
Phys.Rev.E-y15_v92_p043310.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
740.35 kB
Formato
Adobe PDF
|
740.35 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.