Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.

Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death / Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J.; Cheng, Qiang; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M.; Gonzalez Guzman, Michael J.; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet Kumar; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Ryan, Elizabeth P.; Colacci, Annamaria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K.; Woodrick, Jordan; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H.; Lowe, Leroy; Park, Hyun Ho. - In: CARCINOGENESIS. - ISSN 0143-3334. - ELETTRONICO. - 36:(2015), pp. 89-110. [10.1093/carcin/bgv032]

Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death

AMEDEI, AMEDEO;
2015

Abstract

Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
2015
36
89
110
Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J.; Cheng, Qiang; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M.; Gonzalez Guzm...espandi
File in questo prodotto:
File Dimensione Formato  
Disruptive environmental chemicals and cellular.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1012441
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
social impact