Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes

Disruptive chemicals, senescence and immortality / Carnero, Amancio; Blanco-Aparicio, Carmen; Kondoh, Hiroshi; Lleonart, Matilde E.; Martinez-Leal, Juan Fernando; Mondello, Chiara; Scovassi, A.Ivana; Bisson, William H.; Amedei, Amedeo; Roy, Rabindra; Woodrick, Jordan; Colacci, Annamaria; Vaccari, Monica; Raju, Jayadev; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Salem, Hosni K.; Memeo, Lorenzo; Forte, Stefano; Singh, Neetu; Hamid, Roslida A.; Ryan, Elizabeth P.; Brown, Dustin G.; Wise, John Pierce; Wise, Sandra S.; Yasaei, Hemad. - In: CARCINOGENESIS. - ISSN 0143-3334. - STAMPA. - 36 Suppl:(2015), pp. 19-37. [10.1093/carcin/bgv029]

Disruptive chemicals, senescence and immortality

AMEDEI, AMEDEO;
2015

Abstract

Carcinogenesis is thought to be a multistep process, with clonal evolution playing a central role in the process. Clonal evolution involves the repeated 'selection and succession' of rare variant cells that acquire a growth advantage over the remaining cell population through the acquisition of 'driver mutations' enabling a selective advantage in a particular micro-environment. Clonal selection is the driving force behind tumorigenesis and possesses three basic requirements: (i) effective competitive proliferation of the variant clone when compared with its neighboring cells, (ii) acquisition of an indefinite capacity for self-renewal, and (iii) establishment of sufficiently high levels of genetic and epigenetic variability to permit the emergence of rare variants. However, several questions regarding the process of clonal evolution remain. Which cellular processes initiate carcinogenesis in the first place? To what extent are environmental carcinogens responsible for the initiation of clonal evolution? What are the roles of genotoxic and non-genotoxic carcinogens in carcinogenesis? What are the underlying mechanisms responsible for chemical carcinogen-induced cellular immortality? Here, we explore the possible mechanisms of cellular immortalization, the contribution of immortalization to tumorigenesis and the mechanisms by which chemical carcinogens may contribute to these processes
2015
36 Suppl
19
37
Carnero, Amancio; Blanco-Aparicio, Carmen; Kondoh, Hiroshi; Lleonart, Matilde E.; Martinez-Leal, Juan Fernando; Mondello, Chiara; Scovassi, A.Ivana; B...espandi
File in questo prodotto:
File Dimensione Formato  
Disruptive chemicals, senescence and immortality.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1012457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact