In this paper, we would like to derive a quantitative uniqueness estimate, the three-region inequality, for the second order elliptic equation with jump discontinuous coefficients. The derivation of the inequality relies on the Carleman estimate proved in our previous work. We then apply the three-region inequality to study the size estimate problem with one boundary measurement.
Three-region inequalities for the second order elliptic equation with discontinuous coefficients and size estimate / Francini, E.; Lin, C.-L.; Vessella, S.; Wang, J.-N.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 261:(2016), pp. 5306-5323. [10.1016/j.jde.2016.08.002]
Three-region inequalities for the second order elliptic equation with discontinuous coefficients and size estimate
FRANCINI, ELISA;VESSELLA, SERGIO;
2016
Abstract
In this paper, we would like to derive a quantitative uniqueness estimate, the three-region inequality, for the second order elliptic equation with jump discontinuous coefficients. The derivation of the inequality relies on the Carleman estimate proved in our previous work. We then apply the three-region inequality to study the size estimate problem with one boundary measurement.File | Dimensione | Formato | |
---|---|---|---|
francinilinvessellawang2016.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
302.85 kB
Formato
Adobe PDF
|
302.85 kB | Adobe PDF | Richiedi una copia |
jdesize-revised.pdf
Open Access dal 27/11/2018
Descrizione: Versione finale referata
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Creative commons
Dimensione
290.44 kB
Formato
Adobe PDF
|
290.44 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.