In this paper we study the quantitative isoperimetric inequality in the plane. We prove the existence of a set $Omega$, different from a ball, which minimizes the ratio $delta(Omega)/lambda^2(Omega)$, where $delta$ is the isoperimetric deficit and $lambda$ the Fraenkel asymmetry, giving a new proof ofthe quantitative isoperimetric inequality. Some new properties of the optimal set are also shown.
On The Quantitative Isoperimetric Inequality In The Plane / Chiara Bianchini; Gisella Croce; Antoine Henrot. - In: ESAIM. COCV. - ISSN 1292-8119. - STAMPA. - 23:(2017), pp. 517-549. [10.1051/cocv/2016002]
On The Quantitative Isoperimetric Inequality In The Plane
BIANCHINI, CHIARA;
2017
Abstract
In this paper we study the quantitative isoperimetric inequality in the plane. We prove the existence of a set $Omega$, different from a ball, which minimizes the ratio $delta(Omega)/lambda^2(Omega)$, where $delta$ is the isoperimetric deficit and $lambda$ the Fraenkel asymmetry, giving a new proof ofthe quantitative isoperimetric inequality. Some new properties of the optimal set are also shown.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BianchiniCroceHenrot-ESAIMCoCv.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
525.18 kB
Formato
Adobe PDF
|
525.18 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.