In this paper we study the quantitative isoperimetric inequality in the plane. We prove the existence of a set $Omega$, different from a ball, which minimizes the ratio $delta(Omega)/lambda^2(Omega)$, where $delta$ is the isoperimetric deficit and $lambda$ the Fraenkel asymmetry, giving a new proof ofthe quantitative isoperimetric inequality. Some new properties of the optimal set are also shown.

On The Quantitative Isoperimetric Inequality In The Plane / Chiara Bianchini; Gisella Croce; Antoine Henrot. - In: ESAIM. COCV. - ISSN 1292-8119. - STAMPA. - 23:(2017), pp. 517-549. [10.1051/cocv/2016002]

On The Quantitative Isoperimetric Inequality In The Plane

BIANCHINI, CHIARA;
2017

Abstract

In this paper we study the quantitative isoperimetric inequality in the plane. We prove the existence of a set $Omega$, different from a ball, which minimizes the ratio $delta(Omega)/lambda^2(Omega)$, where $delta$ is the isoperimetric deficit and $lambda$ the Fraenkel asymmetry, giving a new proof ofthe quantitative isoperimetric inequality. Some new properties of the optimal set are also shown.
2017
23
517
549
Chiara Bianchini; Gisella Croce; Antoine Henrot
File in questo prodotto:
File Dimensione Formato  
BianchiniCroceHenrot-ESAIMCoCv.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 525.18 kB
Formato Adobe PDF
525.18 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1013409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact