Activation of G protein coupled receptor (GPCR) in astrocytes leads to Ca(2+)-dependent glutamate release via Bestrophin 1 (Best1) channel. Whether receptor-mediated glutamate release from astrocytes can regulate synaptic plasticity remains to be fully understood. RESULTS: We show here that Best1-mediated astrocytic glutamate activates the synaptic N-methyl-D-aspartate receptor (NMDAR) and modulates NMDAR-dependent synaptic plasticity. Our data show that activation of the protease-activated receptor 1 (PAR1) in hippocampal CA1 astrocytes elevates the glutamate concentration at Schaffer collateral-CA1 (SC-CA1) synapses, resulting in activation of GluN2A-containing NMDARs and NMDAR-dependent potentiation of synaptic responses. Furthermore, the threshold for inducing NMDAR-dependent long-term potentiation (LTP) is lowered when astrocytic glutamate release accompanied LTP induction, suggesting that astrocytic glutamate is significant in modulating synaptic plasticity. CONCLUSIONS: Our results provide direct evidence for the physiological importance of channel-mediated astrocytic glutamate in modulating neural circuit functions.
Channel-mediated astrocytic glutamate modulates hippocampal synaptic plasticity by activating postsynaptic NMDA receptors / Park, Hyungju; Han, Kyung-Seok; Seo, Jinsoo; Lee, Jaekwang; Dravid, Shashank M.; Woo, Junsung; Chun, Heejung; Cho, Sukhee; Bae, Jin Young; An, Heeyoung; Koh, Woohyun; Yoon, Bo-Eun; Berlinguer-Palmini, Rolando; Mannaioni, Guido; Traynelis, Stephen F.; Bae, Yong Chul; Choi, Se-Young; Lee, C. Justin. - In: MOLECULAR BRAIN. - ISSN 1756-6606. - STAMPA. - 8:(2015), pp. 1-16. [10.1186/s13041-015-0097-y]
Channel-mediated astrocytic glutamate modulates hippocampal synaptic plasticity by activating postsynaptic NMDA receptors
BERLINGUER PALMINI, ROLANDO;MANNAIONI, GUIDO;
2015
Abstract
Activation of G protein coupled receptor (GPCR) in astrocytes leads to Ca(2+)-dependent glutamate release via Bestrophin 1 (Best1) channel. Whether receptor-mediated glutamate release from astrocytes can regulate synaptic plasticity remains to be fully understood. RESULTS: We show here that Best1-mediated astrocytic glutamate activates the synaptic N-methyl-D-aspartate receptor (NMDAR) and modulates NMDAR-dependent synaptic plasticity. Our data show that activation of the protease-activated receptor 1 (PAR1) in hippocampal CA1 astrocytes elevates the glutamate concentration at Schaffer collateral-CA1 (SC-CA1) synapses, resulting in activation of GluN2A-containing NMDARs and NMDAR-dependent potentiation of synaptic responses. Furthermore, the threshold for inducing NMDAR-dependent long-term potentiation (LTP) is lowered when astrocytic glutamate release accompanied LTP induction, suggesting that astrocytic glutamate is significant in modulating synaptic plasticity. CONCLUSIONS: Our results provide direct evidence for the physiological importance of channel-mediated astrocytic glutamate in modulating neural circuit functions.File | Dimensione | Formato | |
---|---|---|---|
art%3A10.1186%2Fs13041-015-0097-y.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.9 MB
Formato
Adobe PDF
|
1.9 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.