One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.
Enhanced energy transport in genetically engineered excitonic networks / Park, Heechul; Heldman, Nimrod; Rebentrost, Patrick; Abbondanza, Luigi; Iagatti, Alessandro; Alessi, Andrea; Patrizi, Barbara; Salvataggio, Mario; Bussotti, Laura; Mohseni, Masoud; Caruso, Filippo; Johnsen, Hannah C.; Fusco, Roberto; Foggi, Paolo; Scudo, Petra F.; Lloyd, Seth; Belcher, Angela M.. - In: NATURE MATERIALS. - ISSN 1476-1122. - ELETTRONICO. - 15:(2016), pp. 211-216. [doi:10.1038/nmat4448]
Enhanced energy transport in genetically engineered excitonic networks
BUSSOTTI, LAURA;CARUSO, FILIPPO;
2016
Abstract
One of the challenges for achieving efficient exciton transport in solar energy conversion systems is precise structural control of the light-harvesting building blocks. Here, we create a tunable material consisting of a connected chromophore network on an ordered biological virus template. Using genetic engineering, we establish a link between the inter-chromophoric distances and emerging transport properties. The combination of spectroscopy measurements and dynamic modelling enables us to elucidate quantum coherent and classical incoherent energy transport at room temperature. Through genetic modifications, we obtain a significant enhancement of exciton diffusion length of about 68% in an intermediate quantum-classical regime.File | Dimensione | Formato | |
---|---|---|---|
nmat4448.pdf
Accesso chiuso
Descrizione: Virus_transport
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
977.71 kB
Formato
Adobe PDF
|
977.71 kB | Adobe PDF | Richiedi una copia |
Nat-Mat-arxiv.pdf
accesso aperto
Descrizione: Versione Eprint arXiv Virus Transport
Tipologia:
Altro
Licenza:
Open Access
Dimensione
1.92 MB
Formato
Adobe PDF
|
1.92 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.