The use of heavy fluids (typically refrigerants) for tests on turbomachinery equipment, like centrifugal compressors, under similitude with real working conditions is a common practice in the test facilities of manufacturers. This practice leads to the release of the test gas to the environment, mainly coming from seals, test circuit connections, valve gaskets and from operations of circuit assembling/disassembling necessary to replace or service the machine under test. The spatial distribution and flow of these emissions inside the test building is a complex issue, which depends on the specific circuit features, location of sources, geometry and openings of the building and variable climatic conditions of the location. For a preliminary assessment of the health and safety conditions, a NIST computational package - including a CFD solver - was applied. The aim was to validate the applicability and reliability of this tool, which was developed for other types of buildings; from the industrial side, knowledge of the diffusion scenario is important to define test protocols to guarantee acceptable emissions levels for manpower in working areas. The industrial building is organized in multiple inside workspaces. The concentration of the contaminant in the area of the test benches, determined by the internal fluid dynamics, is calculated with the CFD solver included in the NIST package. In the building, air motion is only affected by natural ventilation. For this reason, the interactions between the outside and the interior climatic and microclimatic parameters must be considered, taking into account also the different possible assumptions about the daily management of the openings of the building envelope. Several cases of release and dispersion of heavy fluid inside the working areas, under different boundary conditions, were considered. The sensitivity of the results to the different seasonal conditions was assessed and discussed. The complex internal geometry of the building was simulated by a combination of single zone models. The results showed an expectable presence of test gas emissions in the neighborhood of the test area and the possibility of buoyancy effects within the large building. A relatively stable concentration of the test gas emissions resulted from the application of the model, which was affected only by substantial variations of the climatic conditions.

Analysis of heavy organic fluids dispersion inside industrial buildings hosting turbomachinery test facilities / Fiaschi, Daniele; Manfrida, Giampaolo; Russo, Luigi. - ELETTRONICO. - 1:(2015), pp. 1-11. (Intervento presentato al convegno ASME 2015 9th International Conference on Energy Sustainability tenutosi a San Diego; United States nel 28 June 2015 through 2 July 2015) [10.1115/ES2015-49364].

Analysis of heavy organic fluids dispersion inside industrial buildings hosting turbomachinery test facilities

FIASCHI, DANIELE;MANFRIDA, GIAMPAOLO;RUSSO, LUIGI
2015

Abstract

The use of heavy fluids (typically refrigerants) for tests on turbomachinery equipment, like centrifugal compressors, under similitude with real working conditions is a common practice in the test facilities of manufacturers. This practice leads to the release of the test gas to the environment, mainly coming from seals, test circuit connections, valve gaskets and from operations of circuit assembling/disassembling necessary to replace or service the machine under test. The spatial distribution and flow of these emissions inside the test building is a complex issue, which depends on the specific circuit features, location of sources, geometry and openings of the building and variable climatic conditions of the location. For a preliminary assessment of the health and safety conditions, a NIST computational package - including a CFD solver - was applied. The aim was to validate the applicability and reliability of this tool, which was developed for other types of buildings; from the industrial side, knowledge of the diffusion scenario is important to define test protocols to guarantee acceptable emissions levels for manpower in working areas. The industrial building is organized in multiple inside workspaces. The concentration of the contaminant in the area of the test benches, determined by the internal fluid dynamics, is calculated with the CFD solver included in the NIST package. In the building, air motion is only affected by natural ventilation. For this reason, the interactions between the outside and the interior climatic and microclimatic parameters must be considered, taking into account also the different possible assumptions about the daily management of the openings of the building envelope. Several cases of release and dispersion of heavy fluid inside the working areas, under different boundary conditions, were considered. The sensitivity of the results to the different seasonal conditions was assessed and discussed. The complex internal geometry of the building was simulated by a combination of single zone models. The results showed an expectable presence of test gas emissions in the neighborhood of the test area and the possibility of buoyancy effects within the large building. A relatively stable concentration of the test gas emissions resulted from the application of the model, which was affected only by substantial variations of the climatic conditions.
2015
ASME 2015 9th International Conference on Energy Sustainability
ASME 2015 9th International Conference on Energy Sustainability
San Diego; United States
28 June 2015 through 2 July 2015
Goal 3: Good health and well-being for people
Goal 12: Responsible consumption and production
Fiaschi, Daniele; Manfrida, Giampaolo; Russo, Luigi
File in questo prodotto:
File Dimensione Formato  
ES2015-49364.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 8.85 MB
Formato Adobe PDF
8.85 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1015094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact