Only a few neuronal populations in the central nervous system (CNS) of adult mammals show local regrowth upon dissection of their axon. In order to understand the mechanism that promotes neuronal regeneration, an in-depth analysis of the neuronal types that can remodel after injury is needed. Several studies showed that damaged climbing fibers are capable of regrowing also in adult animals. The investigation of the time-lapse dynamics of degeneration and regeneration of these axons within their complex environment can be performed by time-lapse two-photon fluorescence (TPF) imaging in vivo. This technique is here combined with laser surgery, which proved to be a highly selective tool to disrupt fluorescent structures in the intact mouse cortex. This protocol describes how to perform TPF time-lapse imaging and laser nanosurgery of single axonal branches in the cerebellum in vivo. Olivocerebellar neurons are labeled by anterograde tracing with a dextran-conjugated dye and then monitored by TPF imaging through a cranial window. The terminal portion of their axons are then dissected by irradiation with a Ti:Sapphire laser at high power. The degeneration and potential regrowth of the damaged neuron are monitored by TPF in vivo imaging during the days following the injury.

Laser nanosurgery of cerebellar axons in vivo / Allegra Mascaro, Anna L; Sacconi, Leonardo; Pavone, Francesco Saverio. - In: JOURNAL OF VISUALIZED EXPERIMENTS. - ISSN 1940-087X. - ELETTRONICO. - (2014), pp. e51371-0. [10.3791/51371]

Laser nanosurgery of cerebellar axons in vivo

ALLEGRA MASCARO, ANNA LETIZIA;SACCONI, LEONARDO;PAVONE, FRANCESCO SAVERIO
2014

Abstract

Only a few neuronal populations in the central nervous system (CNS) of adult mammals show local regrowth upon dissection of their axon. In order to understand the mechanism that promotes neuronal regeneration, an in-depth analysis of the neuronal types that can remodel after injury is needed. Several studies showed that damaged climbing fibers are capable of regrowing also in adult animals. The investigation of the time-lapse dynamics of degeneration and regeneration of these axons within their complex environment can be performed by time-lapse two-photon fluorescence (TPF) imaging in vivo. This technique is here combined with laser surgery, which proved to be a highly selective tool to disrupt fluorescent structures in the intact mouse cortex. This protocol describes how to perform TPF time-lapse imaging and laser nanosurgery of single axonal branches in the cerebellum in vivo. Olivocerebellar neurons are labeled by anterograde tracing with a dextran-conjugated dye and then monitored by TPF imaging through a cranial window. The terminal portion of their axons are then dissected by irradiation with a Ti:Sapphire laser at high power. The degeneration and potential regrowth of the damaged neuron are monitored by TPF in vivo imaging during the days following the injury.
2014
e51371
0
Allegra Mascaro, Anna L; Sacconi, Leonardo; Pavone, Francesco Saverio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1017157
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact