Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin–graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene.Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

The classical and quantum dynamics of molecular spins on graphene / Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Marko Burghard; and Lapo Bogani. - In: NATURE MATERIALS. - ISSN 1476-1122. - STAMPA. - 15:(2016), pp. 164-169. [DOI: 10.1038/NMAT4490]

The classical and quantum dynamics of molecular spins on graphene

RETTORI, ANGELO;Lapo Bogani
2016

Abstract

Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin–graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene.Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
2016
15
164
169
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern,...espandi
File in questo prodotto:
File Dimensione Formato  
nmat4490.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Richiedi una copia
NMat_preprint.pdf

accesso aperto

Tipologia: Altro
Licenza: Open Access
Dimensione 3.68 MB
Formato Adobe PDF
3.68 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1021166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 114
  • ???jsp.display-item.citation.isi??? 110
social impact