There is evidence that UV radiation may detrimentally affect the biosynthesis of carotenoids, particularly de-epoxided xanthophylls, while strongly promoting phenylpropanoid, particularly flavonoid biosynthesis in a range of taxa. Here we tested the hypothesis that mesophyll flavonoids might protect chloroplasts from UV-induced photo-oxidative damage, by partially compensating for the UV-induced depression of xanthophyll biosynthesis. To test this hypothesis we grew two members of the Oleaceae family, Ligustrum vulgare L. and Phillyrea latifolia L., under either partial shading or fully exposed to sunlight, in the presence or in the absence of UV radiation. The examined species, which display very similar flavonoid composition, largely differ in their ability to limit the transmission of UV and visible light through the leaf and, hence, in the accumulation of flavonoids in mesophyll cells. We conducted measurements of photosynthesis, chlorophyll a fluorescence kinetics, the concentrations of individual carotenoids and phenylpropanoids at the level of whole-leaf, as well as the content of epidermal flavonoids. We also performed multispectral fluorescence micro-imaging to unveil the intra-cellular distribution of flavonoids in mesophyll cells. UV radiation decreased the concentration of carotenoids, particularly of xanthophylls, while greatly promoting the accumulation of flavonoids in palisade parenchyma cells. These effects were much greater in L. vulgare than in P. latifolia. UV radiation significantly inhibited the de-epoxidation of xanthophyll cycle pigments, while enhancing the concentration of luteolin, and particularly of quercetin glycosides. Flavonoids accumulated in the vacuole and the chloroplasts in palisade cells proximal to the adaxial epidermis. We hypothesize that flavonoids might complement the photo-protective functions of xanthophylls in the chloroplasts of mesophyll cells exposed to the greatest doses of UV radiation. However, UV radiation might result in adaxial mesophyll cells being less effective in dissipating the excess of radiant energy, e.g., by decreasing their capacity of thermal dissipation of excess visible light in the chloroplast.

UV radiation promotes flavonoid biosynthesis, while negatively affecting the biosynthesis and the de-epoxidation of xanthophylls: Consequence for photoprotection? / Guidi, Lucia; Brunetti, Cecilia; Fini, Alessio; Agati, Giovanni; Ferrini, Francesco; Gori, Antonella; Tattini, Massimiliano. - In: ENVIRONMENTAL AND EXPERIMENTAL BOTANY. - ISSN 0098-8472. - STAMPA. - 127:(2016), pp. 14-25. [10.1016/j.envexpbot.2016.03.002]

UV radiation promotes flavonoid biosynthesis, while negatively affecting the biosynthesis and the de-epoxidation of xanthophylls: Consequence for photoprotection?

BRUNETTI, CECILIA;FINI, ALESSIO;FERRINI, FRANCESCO;GORI, ANTONELLA;
2016

Abstract

There is evidence that UV radiation may detrimentally affect the biosynthesis of carotenoids, particularly de-epoxided xanthophylls, while strongly promoting phenylpropanoid, particularly flavonoid biosynthesis in a range of taxa. Here we tested the hypothesis that mesophyll flavonoids might protect chloroplasts from UV-induced photo-oxidative damage, by partially compensating for the UV-induced depression of xanthophyll biosynthesis. To test this hypothesis we grew two members of the Oleaceae family, Ligustrum vulgare L. and Phillyrea latifolia L., under either partial shading or fully exposed to sunlight, in the presence or in the absence of UV radiation. The examined species, which display very similar flavonoid composition, largely differ in their ability to limit the transmission of UV and visible light through the leaf and, hence, in the accumulation of flavonoids in mesophyll cells. We conducted measurements of photosynthesis, chlorophyll a fluorescence kinetics, the concentrations of individual carotenoids and phenylpropanoids at the level of whole-leaf, as well as the content of epidermal flavonoids. We also performed multispectral fluorescence micro-imaging to unveil the intra-cellular distribution of flavonoids in mesophyll cells. UV radiation decreased the concentration of carotenoids, particularly of xanthophylls, while greatly promoting the accumulation of flavonoids in palisade parenchyma cells. These effects were much greater in L. vulgare than in P. latifolia. UV radiation significantly inhibited the de-epoxidation of xanthophyll cycle pigments, while enhancing the concentration of luteolin, and particularly of quercetin glycosides. Flavonoids accumulated in the vacuole and the chloroplasts in palisade cells proximal to the adaxial epidermis. We hypothesize that flavonoids might complement the photo-protective functions of xanthophylls in the chloroplasts of mesophyll cells exposed to the greatest doses of UV radiation. However, UV radiation might result in adaxial mesophyll cells being less effective in dissipating the excess of radiant energy, e.g., by decreasing their capacity of thermal dissipation of excess visible light in the chloroplast.
2016
127
14
25
Guidi, Lucia; Brunetti, Cecilia; Fini, Alessio; Agati, Giovanni; Ferrini, Francesco; Gori, Antonella; Tattini, Massimiliano
File in questo prodotto:
File Dimensione Formato  
EEB 2016 UV radiation.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1029010
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 46
social impact