Computer Aided Design (CAD) software libraries rely on the tensor-product NURBS model as standard spline technology. However, in applications of industrial complexity, this mathematical model does not provide sufficient flexibility as an effective geometric modeling option. In particular, the multivariate tensor-product construction precludes the design of adaptive spline representations that support local refinements. Consequently, many patches and trimming operations are needed in challenging applications. The investigation of generalizations of tensor-product splines that support adaptive refinement has recently gained significant momentum due to the advent of Isogeometric Analysis (IgA) [2], where adaptivity is needed for performing local refinement in numerical simulations. Moreover, traditional CAD models containing many small (and possibly trimmed) patches are not directly usable for IgA. Truncated hierarchical B-splines (THB-splines) provide the possibility of introducing different levels of resolution in an adaptive framework, while simultaneously preserving the main properties of standard B-splines. We demonstrate that surface fitting schemes based on THB-spline representations may lead to significant improvements for the geometric (re-)construction of critical turbine blade parts. Furthermore, the local THB-spline evaluation in terms of B-spline patches can be properly combined with commercial geometric modeling kernels in order to convert the multilevel spline representation into an equivalent – namely, exact – CAD geometry. This software interface fully integrates the adaptive modeling tool into CAD systems that comply with the current NURBS standard. It also paves the way for the introduction of isogeometric simulations into complex real world applications.

Adaptive CAD model (re-)construction with THB-splines / Kiss, Gábor; Giannelli, Carlotta; Zore, Urška; Jüttler, Bert; Großmann, David; Barner, Johannes. - In: GRAPHICAL MODELS. - ISSN 1524-0703. - STAMPA. - 76:(2014), pp. 273-288. [10.1016/j.gmod.2014.03.017]

Adaptive CAD model (re-)construction with THB-splines

GIANNELLI, CARLOTTA;
2014

Abstract

Computer Aided Design (CAD) software libraries rely on the tensor-product NURBS model as standard spline technology. However, in applications of industrial complexity, this mathematical model does not provide sufficient flexibility as an effective geometric modeling option. In particular, the multivariate tensor-product construction precludes the design of adaptive spline representations that support local refinements. Consequently, many patches and trimming operations are needed in challenging applications. The investigation of generalizations of tensor-product splines that support adaptive refinement has recently gained significant momentum due to the advent of Isogeometric Analysis (IgA) [2], where adaptivity is needed for performing local refinement in numerical simulations. Moreover, traditional CAD models containing many small (and possibly trimmed) patches are not directly usable for IgA. Truncated hierarchical B-splines (THB-splines) provide the possibility of introducing different levels of resolution in an adaptive framework, while simultaneously preserving the main properties of standard B-splines. We demonstrate that surface fitting schemes based on THB-spline representations may lead to significant improvements for the geometric (re-)construction of critical turbine blade parts. Furthermore, the local THB-spline evaluation in terms of B-spline patches can be properly combined with commercial geometric modeling kernels in order to convert the multilevel spline representation into an equivalent – namely, exact – CAD geometry. This software interface fully integrates the adaptive modeling tool into CAD systems that comply with the current NURBS standard. It also paves the way for the introduction of isogeometric simulations into complex real world applications.
2014
76
273
288
Kiss, Gábor; Giannelli, Carlotta; Zore, Urška; Jüttler, Bert; Großmann, David; Barner, Johannes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1036025
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 44
social impact