We introduce the notions of Schröder shape and of Schröder tableau, which provide some kind of analogs of the classical notions of Young shape and Young tableau. We investigate some properties of the partial order given by containment of Schröder shapes. Then we propose an algorithm which is the natural analog of the well known RS correspondence for Young tableaux, and we characterize those permutations whose insertion tableaux have some special shapes. We end our paper with a few suggestions for possible further work.

Schröder partitions and Schröder tableaux / Ferrari, Luca. - STAMPA. - 9538:(2016), pp. 161-172. ( INTERNATIONAL WORKSHOP ON COMBINATORIAL ALGORITHM Verona (Italy) October, 5-7, 2015) [10.1007/978-3-319-29516-9_14].

Schröder partitions and Schröder tableaux

FERRARI, LUCA
2016

Abstract

We introduce the notions of Schröder shape and of Schröder tableau, which provide some kind of analogs of the classical notions of Young shape and Young tableau. We investigate some properties of the partial order given by containment of Schröder shapes. Then we propose an algorithm which is the natural analog of the well known RS correspondence for Young tableaux, and we characterize those permutations whose insertion tableaux have some special shapes. We end our paper with a few suggestions for possible further work.
2016
Combinatorial Algorithms, 26th International Workshop, IWOCA 2015, Verona, Italy, October 5-7, 2015, Revised Selected Papers
INTERNATIONAL WORKSHOP ON COMBINATORIAL ALGORITHM
Verona (Italy)
October, 5-7, 2015
Ferrari, Luca
File in questo prodotto:
File Dimensione Formato  
schr_tableaux_LNCS.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 325.5 kB
Formato Adobe PDF
325.5 kB Adobe PDF
Ferrari2016_Chapter_SchröderPartitionsAndSchröderT.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 338.35 kB
Formato Adobe PDF
338.35 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1036646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact