This article studies, both theoretically and numerically, a nonlinear drift-diffusion equation describing a gas of fermions in the zero-temperature limit. The equation is considered on a bounded domain whose boundary is divided into an “insulating” part, where homogeneous Neumann conditions are imposed, and a “contact” part, where nonhomogeneous Dirichlet data are assigned. The existence of stationary solutions for a suitable class of Dirichlet data is proven by assuming a simple domain configuration. The long-time behavior of the time-dependent solution, for more complex domain configurations, is investigated by means of numerical experiments.

On a nonlinear parabolic problem arising in the quantum diffusive description of a degenerate fermion gas / Barletti, L.; Salvarani, F.. - In: SIAM JOURNAL ON APPLIED MATHEMATICS. - ISSN 0036-1399. - STAMPA. - 76:(2016), pp. 867-886. [10.1137/140998263]

On a nonlinear parabolic problem arising in the quantum diffusive description of a degenerate fermion gas

BARLETTI, LUIGI;
2016

Abstract

This article studies, both theoretically and numerically, a nonlinear drift-diffusion equation describing a gas of fermions in the zero-temperature limit. The equation is considered on a bounded domain whose boundary is divided into an “insulating” part, where homogeneous Neumann conditions are imposed, and a “contact” part, where nonhomogeneous Dirichlet data are assigned. The existence of stationary solutions for a suitable class of Dirichlet data is proven by assuming a simple domain configuration. The long-time behavior of the time-dependent solution, for more complex domain configurations, is investigated by means of numerical experiments.
2016
76
867
886
Barletti, L.; Salvarani, F.
File in questo prodotto:
File Dimensione Formato  
2016SIAP_originale.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 890.79 kB
Formato Adobe PDF
890.79 kB Adobe PDF   Richiedi una copia
BaSa_SIAP_revision.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 713.91 kB
Formato Adobe PDF
713.91 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1040171
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact