The existence of a nontrivial bounded solution to the Dirichlet problem, for a class of nonlinear elliptic equations involving a fully anisotropic partial differential operator, is established. The relevant operator depends on the gradient of the unknown through the differential of a general convex function. This function need not be radial, nor have a polynomial type growth. Besides providing genuinely new conclusions, our result recovers and embraces, in a unified framework, several contributions in the existing literature, and augments them in various special instances.
Dirichlet problems for fully anisotropic elliptic equations / Barletta, Giuseppina; Cianchi, Andrea. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - STAMPA. - 147:(2017), pp. 25-60. [10.1017/S0308210516000020]
Dirichlet problems for fully anisotropic elliptic equations
CIANCHI, ANDREA
2017
Abstract
The existence of a nontrivial bounded solution to the Dirichlet problem, for a class of nonlinear elliptic equations involving a fully anisotropic partial differential operator, is established. The relevant operator depends on the gradient of the unknown through the differential of a general convex function. This function need not be radial, nor have a polynomial type growth. Besides providing genuinely new conclusions, our result recovers and embraces, in a unified framework, several contributions in the existing literature, and augments them in various special instances.| File | Dimensione | Formato | |
|---|---|---|---|
|
Barletta-Cianchi_PRSE.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
282.8 kB
Formato
Adobe PDF
|
282.8 kB | Adobe PDF | Richiedi una copia |
|
2015091-BarlettaCianchi.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
448.37 kB
Formato
Adobe PDF
|
448.37 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



