The existence of a nontrivial bounded solution to the Dirichlet problem, for a class of nonlinear elliptic equations involving a fully anisotropic partial differential operator, is established. The relevant operator depends on the gradient of the unknown through the differential of a general convex function. This function need not be radial, nor have a polynomial type growth. Besides providing genuinely new conclusions, our result recovers and embraces, in a unified framework, several contributions in the existing literature, and augments them in various special instances.

Dirichlet problems for fully anisotropic elliptic equations / Barletta, Giuseppina; Cianchi, Andrea. - In: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS. - ISSN 0308-2105. - STAMPA. - 147:(2017), pp. 25-60. [10.1017/S0308210516000020]

Dirichlet problems for fully anisotropic elliptic equations

CIANCHI, ANDREA
2017

Abstract

The existence of a nontrivial bounded solution to the Dirichlet problem, for a class of nonlinear elliptic equations involving a fully anisotropic partial differential operator, is established. The relevant operator depends on the gradient of the unknown through the differential of a general convex function. This function need not be radial, nor have a polynomial type growth. Besides providing genuinely new conclusions, our result recovers and embraces, in a unified framework, several contributions in the existing literature, and augments them in various special instances.
2017
147
25
60
Barletta, Giuseppina; Cianchi, Andrea
File in questo prodotto:
File Dimensione Formato  
Barletta-Cianchi_PRSE.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 282.8 kB
Formato Adobe PDF
282.8 kB Adobe PDF   Richiedi una copia
2015091-BarlettaCianchi.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 448.37 kB
Formato Adobe PDF
448.37 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1040587
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 33
social impact