Podocyte death and regeneration are major topics in kidney research but remain controversial. Data obtained in humans demonstrate the existence of cells sited along Bowman's capsule that behave as podocyte progenitors in vitro and in in vivo mouse models of podocyte injury xenotrasplanted with this human-derived population. However, this podocyte reservoir still remains elusive in murine models, where it could be more easily studied. Transgenic models can be a powerful tool to identify this population and to better understand its dynamics and hierarchies in both physiological and pathological conditions. Indeed, exploiting transgenic approaches allows detecting, at the single cell level, movements, cell death, and replacement. Moreover, through lineage tracing it is now possible to identify specific population increase and to point out clonal expansions during or after the regenerative processes. However, applying transgenic strategies to study glomerular regeneration requires the search of markers to unequivocally identify this progenitor population. Achieving this aim would lead to a deep comprehension of the biological processes that underlie glomerular regeneration and clarify how different cell pools interface during this phase. Here we discuss strategies that have been used and new approaches in transgenic models finalized to study podocyte loss and subsequent replacement.

Transgenic strategies to study podocyte loss and regeneration / Lombardi, Duccio; Lasagni, Laura. - In: STEM CELLS INTERNATIONAL. - ISSN 1687-9678. - ELETTRONICO. - 2015:(2015), pp. 6-13. [10.1155/2015/678347]

Transgenic strategies to study podocyte loss and regeneration

LOMBARDI, DUCCIO;LASAGNI, LAURA
2015

Abstract

Podocyte death and regeneration are major topics in kidney research but remain controversial. Data obtained in humans demonstrate the existence of cells sited along Bowman's capsule that behave as podocyte progenitors in vitro and in in vivo mouse models of podocyte injury xenotrasplanted with this human-derived population. However, this podocyte reservoir still remains elusive in murine models, where it could be more easily studied. Transgenic models can be a powerful tool to identify this population and to better understand its dynamics and hierarchies in both physiological and pathological conditions. Indeed, exploiting transgenic approaches allows detecting, at the single cell level, movements, cell death, and replacement. Moreover, through lineage tracing it is now possible to identify specific population increase and to point out clonal expansions during or after the regenerative processes. However, applying transgenic strategies to study glomerular regeneration requires the search of markers to unequivocally identify this progenitor population. Achieving this aim would lead to a deep comprehension of the biological processes that underlie glomerular regeneration and clarify how different cell pools interface during this phase. Here we discuss strategies that have been used and new approaches in transgenic models finalized to study podocyte loss and subsequent replacement.
2015
2015
6
13
Lombardi, Duccio; Lasagni, Laura
File in questo prodotto:
File Dimensione Formato  
678347 (1).pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1041927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact