We designed a plate impact shock recovery experiment to simulate the starting materials and shock conditions associated with the only known natural quasicrystals, in the Khatyrka meteorite. At the boundaries among CuAl5, (Mg0.75Fe2+0.25)2SiO4 olivine, and the stainless steel chamber walls, the recovered specimen contains numerous micron-scale grains of a quasicrystalline phase displaying face-centered icosahedral symmetry and low phason strain. The compositional range of the icosahedral phase is Al68–73Fe11–16Cu10–12Cr1–4Ni1–2 and extends toward higher Al/(Cu+Fe) and Fe/Cu ratios than those reported for natural icosahedrite or for any previously known synthetic quasicrystal in the Al-Cu-Fe system. The shock-induced synthesis demonstrated in this experiment reinforces the evidence that natural quasicrystals formed during a shock event but leaves open the question of whether this synthesis pathway is attributable to the expanded thermodynamic stability range of the quasicrystalline phase at high pressure, to a favorable kinetic pathway that exists under shock conditions, or to both thermodynamic and kinetic factors.
Shock synthesis of quasicrystals with implications for their origin in asteroid collisions / Asimow, P.D.; Lin, C.; Bindi, L.; Ma, C.; Tschauner, O.; Hollister, L.S.; Steinhardt, P.J.. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - ELETTRONICO. - 113:(2016), pp. 7077-7081.
Shock synthesis of quasicrystals with implications for their origin in asteroid collisions
BINDI, LUCA;
2016
Abstract
We designed a plate impact shock recovery experiment to simulate the starting materials and shock conditions associated with the only known natural quasicrystals, in the Khatyrka meteorite. At the boundaries among CuAl5, (Mg0.75Fe2+0.25)2SiO4 olivine, and the stainless steel chamber walls, the recovered specimen contains numerous micron-scale grains of a quasicrystalline phase displaying face-centered icosahedral symmetry and low phason strain. The compositional range of the icosahedral phase is Al68–73Fe11–16Cu10–12Cr1–4Ni1–2 and extends toward higher Al/(Cu+Fe) and Fe/Cu ratios than those reported for natural icosahedrite or for any previously known synthetic quasicrystal in the Al-Cu-Fe system. The shock-induced synthesis demonstrated in this experiment reinforces the evidence that natural quasicrystals formed during a shock event but leaves open the question of whether this synthesis pathway is attributable to the expanded thermodynamic stability range of the quasicrystalline phase at high pressure, to a favorable kinetic pathway that exists under shock conditions, or to both thermodynamic and kinetic factors.| File | Dimensione | Formato | |
|---|---|---|---|
|
Asimow et al_2016.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



