We initiate the study of an analogue of the Yamabe problem for complex manifolds. More precisely, fixed a conformal Hermitian structure on a compact complex manifold, we are concerned in the existence of metrics with constant Chern scalar curvature. In this note, we set the problem and we provide a positive answer when the expected constant Chern scalar curvature is non-positive. In particular, this includes the case when the Kodaira dimension of the manifold is non-negative. Finally, we give some remarks on the positive curvature case, showing existence in some special cases and the failure, in general, of uniqueness of the solution.

On the Chern-Yamabe problem / Angella, Daniele; Calamai, Simone; Spotti, Cristiano. - In: MATHEMATICAL RESEARCH LETTERS. - ISSN 1073-2780. - STAMPA. - 24:(2017), pp. 645-677. [10.4310/MRL.2017.v24.n3.a3]

On the Chern-Yamabe problem

ANGELLA, DANIELE;CALAMAI, SIMONE;
2017

Abstract

We initiate the study of an analogue of the Yamabe problem for complex manifolds. More precisely, fixed a conformal Hermitian structure on a compact complex manifold, we are concerned in the existence of metrics with constant Chern scalar curvature. In this note, we set the problem and we provide a positive answer when the expected constant Chern scalar curvature is non-positive. In particular, this includes the case when the Kodaira dimension of the manifold is non-negative. Finally, we give some remarks on the positive curvature case, showing existence in some special cases and the failure, in general, of uniqueness of the solution.
2017
24
645
677
Angella, Daniele; Calamai, Simone; Spotti, Cristiano
File in questo prodotto:
File Dimensione Formato  
MRL_24_03_A03.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 248.87 kB
Formato Adobe PDF
248.87 kB Adobe PDF
1501.02638.pdf

accesso aperto

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 480.62 kB
Formato Adobe PDF
480.62 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1046313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 23
social impact