Climatic factors and weather type frequencies affecting Tuscany are examined to discriminate between vintages ranked into the upper- and lower-quartile years as a consensus from six rating sources of Chianti wine during the period 1980 to 2011. These rankings represent a considerable improvement on any individual publisher ranking, displaying an overall good consensus for the best and worst vintage years. Climate variables are calculated and weather type frequencies are matched between the eight highest and the eight lowest ranked vintages in the main phenological phases of Sangiovese grapevine. Results show that higher heat units; mean, maximum and minimum temperature; and more days with temperature above 35 A degrees C were the most important discriminators between good- and poor-quality vintages in the spring and summer growth phases, with heat units important during ripening. Precipitation influences on vintage quality are significant only during veraison where low precipitation amounts and precipitation days are important for better quality vintages. In agreement with these findings, weather type analysis shows good vintages are favoured by weather type 4 (more anticyclones over central Mediterranean Europe (CME)), giving warm dry growing season conditions. Poor vintages all relate to higher frequencies of either weather type 3, which, by producing perturbation crossing CME, favours cooler and wetter conditions, and/or weather type 7 which favours cold dry continental air masses from the east and north east over CME. This approach shows there are important weather type frequency differences between good- and poor-quality vintages. Trend analysis shows that changes in weather type frequencies are more important than any due to global warming.

Seasonal differences in climate in the Chianti region of Tuscany and the relationship to vintage wine quality / Salinger, Michael James; Baldi, Marina; Grifoni, Daniele; Jones, Greg; Bartolini, Giorgio; Cecchi, Stefano; Messeri, Gianni; Dalla Marta, Anna; Orlandini, Simone; Dalu, Giovanni A.; Maracchi, Gianpiero. - In: INTERNATIONAL JOURNAL OF BIOMETEOROLOGY. - ISSN 0020-7128. - STAMPA. - 59:(2015), pp. 1799-1811. [10.1007/s00484-015-0988-8]

Seasonal differences in climate in the Chianti region of Tuscany and the relationship to vintage wine quality

CECCHI, STEFANO;DALLA MARTA, ANNA;ORLANDINI, SIMONE;
2015

Abstract

Climatic factors and weather type frequencies affecting Tuscany are examined to discriminate between vintages ranked into the upper- and lower-quartile years as a consensus from six rating sources of Chianti wine during the period 1980 to 2011. These rankings represent a considerable improvement on any individual publisher ranking, displaying an overall good consensus for the best and worst vintage years. Climate variables are calculated and weather type frequencies are matched between the eight highest and the eight lowest ranked vintages in the main phenological phases of Sangiovese grapevine. Results show that higher heat units; mean, maximum and minimum temperature; and more days with temperature above 35 A degrees C were the most important discriminators between good- and poor-quality vintages in the spring and summer growth phases, with heat units important during ripening. Precipitation influences on vintage quality are significant only during veraison where low precipitation amounts and precipitation days are important for better quality vintages. In agreement with these findings, weather type analysis shows good vintages are favoured by weather type 4 (more anticyclones over central Mediterranean Europe (CME)), giving warm dry growing season conditions. Poor vintages all relate to higher frequencies of either weather type 3, which, by producing perturbation crossing CME, favours cooler and wetter conditions, and/or weather type 7 which favours cold dry continental air masses from the east and north east over CME. This approach shows there are important weather type frequency differences between good- and poor-quality vintages. Trend analysis shows that changes in weather type frequencies are more important than any due to global warming.
2015
59
1799
1811
Salinger, Michael James; Baldi, Marina; Grifoni, Daniele; Jones, Greg; Bartolini, Giorgio; Cecchi, Stefano; Messeri, Gianni; Dalla Marta, Anna; Orland...espandi
File in questo prodotto:
File Dimensione Formato  
520.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1050369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact