T helper 1 (Th1) type cytokines and chemokines are bioactive mediators in inflammation underling several diseases and co-morbid conditions, such as cardiovascular and metabolic disorders. Th1 chemokine CXCL10 participates in heart damage initiation/progression; cardioprotection has been recently associated with sildenafil, a type 5 phosphodiesterase inhibitor. We aimed to evaluate the effect of sildenafil on CXCL10 in inflammatory conditions associated with diabetic cardiomyopathy. We analyzed: CXCL10 gene and protein in human cardiac, endothelial, and immune cells challenged by pro-inflammatory stimuli with and without sildenafil; serum CXCL10 in diabetic subjects at cardiomyopathy onset, before and after 3 months of treatment with sildenafil vs. placebo. Sildenafil significantly decreased CXCL10 protein secretion (IC50 = 2.6 × 10(-7)) and gene expression in human cardiomyocytes and significantly decreased circulating CXCL10 in subjects with chemokine basal level ≥ 930 pg/ml, the cut-off value as assessed by ROC analysis. In conclusion, sildenafil could be a pharmacologic tool to control CXCL10-associated inflammation in diabetic cardiomyopathy.

Phosphodiesterase Type 5 Inhibitor Sildenafil Decreases the Proinflammatory Chemokine CXCL10 in Human Cardiomyocytes and in Subjects with Diabetic Cardiomyopathy / Di Luigi L; Corinaldesi C; Colletti M; Scolletta S; Antinozzi C; Vannelli GB; Giannetta E; Gianfrilli D; Isidori AM; Migliaccio S; Poerio N; Fraziano M; Lenzi A; Crescioli C. - In: INFLAMMATION. - ISSN 0360-3997. - STAMPA. - (2016), pp. 1238-1252.

Phosphodiesterase Type 5 Inhibitor Sildenafil Decreases the Proinflammatory Chemokine CXCL10 in Human Cardiomyocytes and in Subjects with Diabetic Cardiomyopathy

VANNELLI, GABRIELLA;
2016

Abstract

T helper 1 (Th1) type cytokines and chemokines are bioactive mediators in inflammation underling several diseases and co-morbid conditions, such as cardiovascular and metabolic disorders. Th1 chemokine CXCL10 participates in heart damage initiation/progression; cardioprotection has been recently associated with sildenafil, a type 5 phosphodiesterase inhibitor. We aimed to evaluate the effect of sildenafil on CXCL10 in inflammatory conditions associated with diabetic cardiomyopathy. We analyzed: CXCL10 gene and protein in human cardiac, endothelial, and immune cells challenged by pro-inflammatory stimuli with and without sildenafil; serum CXCL10 in diabetic subjects at cardiomyopathy onset, before and after 3 months of treatment with sildenafil vs. placebo. Sildenafil significantly decreased CXCL10 protein secretion (IC50 = 2.6 × 10(-7)) and gene expression in human cardiomyocytes and significantly decreased circulating CXCL10 in subjects with chemokine basal level ≥ 930 pg/ml, the cut-off value as assessed by ROC analysis. In conclusion, sildenafil could be a pharmacologic tool to control CXCL10-associated inflammation in diabetic cardiomyopathy.
2016
1238
1252
Di Luigi L; Corinaldesi C; Colletti M; Scolletta S; Antinozzi C; Vannelli GB; Giannetta E; Gianfrilli D; Isidori AM; Migliaccio S; Poerio N; Fraziano M; Lenzi A; Crescioli C
File in questo prodotto:
File Dimensione Formato  
Luigi2016_Article_PhosphodiesteraseType5Inhibito.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1050493
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 45
social impact