In the last decades a dramatic loss of Apis mellifera hives has been reported in both Europe and USA. Research in this field is oriented towards identifying a synergy of contributing factors, i.e. pathogens, pesticides, habitat loss and pollution to the weakening of the hive. Cadmium (Cd) is a hazardous anthropogenic pollutant whose effects are proving to be increasingly lethal. Among the multiple damages related to Cd contamination, some studies report that it causes immunosuppression in various animal species. The aim of this paper is to determine whether contamination by Cd, may have a similar effect on the honey bees’ immunocompetence. Our results, obtained by immune challenge experiments and confirmed by structural and ultrastructural observations show that such metal causes a reduction in immunocompetence in 3 days Cd exposed bees. As further evidence of honey bee response to Cd treatment, Energy Dispersive X-ray Spectroscopy (X-EDS) has revealed the presence of zinc (Zn) in peculiar electron-dense granules in fat body cells. Zn is a characteristic component of metallothioneins (MTs), which are usually synthesized as anti-oxidant and scavenger tools against Cd contamination. Our findings suggest that honey bee colonies may have a weakened immune system in Cd polluted areas, resulting in a decreased ability in dealing with pathogens.

Evidence of immunocompetence reduction induced by cadmium exposure in honey bees (Apis mellifera) / Polykretis, P.; Delfino, G.; Petrocelli, I.; Cervo, R.; Tanteri, G.; Montori, G.; Perito, B.; Branca, J.J.V.; Morucci, G.; Gulisano, M.. - In: ENVIRONMENTAL POLLUTION. - ISSN 0269-7491. - STAMPA. - 218:(2016), pp. 826-834. [10.1016/j.envpol.2016.08.006]

Evidence of immunocompetence reduction induced by cadmium exposure in honey bees (Apis mellifera)

POLYKRESTIS, PANAGIS
;
DELFINO, GIOVANNI;PETROCELLI, IACOPO;CERVO, RITA;TANTERI, GIANFRANCO;MONTORI, GILBERTO;PERITO, BRUNELLA;BRANCA, JACOPO JUNIO VALERIO;MORUCCI, GABRIELE;GULISANO, MASSIMO
2016

Abstract

In the last decades a dramatic loss of Apis mellifera hives has been reported in both Europe and USA. Research in this field is oriented towards identifying a synergy of contributing factors, i.e. pathogens, pesticides, habitat loss and pollution to the weakening of the hive. Cadmium (Cd) is a hazardous anthropogenic pollutant whose effects are proving to be increasingly lethal. Among the multiple damages related to Cd contamination, some studies report that it causes immunosuppression in various animal species. The aim of this paper is to determine whether contamination by Cd, may have a similar effect on the honey bees’ immunocompetence. Our results, obtained by immune challenge experiments and confirmed by structural and ultrastructural observations show that such metal causes a reduction in immunocompetence in 3 days Cd exposed bees. As further evidence of honey bee response to Cd treatment, Energy Dispersive X-ray Spectroscopy (X-EDS) has revealed the presence of zinc (Zn) in peculiar electron-dense granules in fat body cells. Zn is a characteristic component of metallothioneins (MTs), which are usually synthesized as anti-oxidant and scavenger tools against Cd contamination. Our findings suggest that honey bee colonies may have a weakened immune system in Cd polluted areas, resulting in a decreased ability in dealing with pathogens.
2016
218
826
834
Polykretis, P.; Delfino, G.; Petrocelli, I.; Cervo, R.; Tanteri, G.; Montori, G.; Perito, B.; Branca, J.J.V.; Morucci, G.; Gulisano, M.
File in questo prodotto:
File Dimensione Formato  
CadmiumApisMellifera_Polykretis.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 3.54 MB
Formato Adobe PDF
3.54 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1051723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 19
social impact