A validated non-linear uncoupled method for flutter stability analysis was employed to estimate the aerodynamic damping of an HP (High Pressure) steam turbine blade row. Usually such blade rows are not affected to flutter instability problems, yet an estimation of the aerodynamic damping can be useful for an accurate aeromechanical characterization of these kind of blade rows. The geometry under investigation is a typical steam turbine blade row at design point. Computational aeroelastic analyses are performed on the more relevant modeshapes, sampling the nodal diameters, in order to well describe the typical aeroelastic stability curve. The presence of the tip shroud implies a strong mechanical coupling between adjacent blades resulting in complex modeshapes with high frequency, significantly different from those usually analyzed in the flutter analysis. The results in term of aerodynamic damping curves are rather different from the usually sinusoidal shape. This is due to the large variation of the frequency over the analyzed nodal diameters, especially at low nodal diameters range. This results are useful to give a better insight in the aeroelastic response of this type of blades.

Numerical aerodynamic damping evaluation of high-pressure steam turbine blades for aeromechanical characterization / Peruzzi, L; Bellucci, J; Pinelli, L; Arnone, A; Arcangeli, L; Cosi, L; Mazzucco, M. - ELETTRONICO. - 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines:(2016), pp. 0-0. (Intervento presentato al convegno ASME Turbo Expo 2016 tenutosi a Seoul, South Korea nel June 13-17, 2016) [10.1115/GT2016-56378].

Numerical aerodynamic damping evaluation of high-pressure steam turbine blades for aeromechanical characterization

PERUZZI, LORENZO;BELLUCCI, JURI;PINELLI, LORENZO;ARNONE, ANDREA;
2016

Abstract

A validated non-linear uncoupled method for flutter stability analysis was employed to estimate the aerodynamic damping of an HP (High Pressure) steam turbine blade row. Usually such blade rows are not affected to flutter instability problems, yet an estimation of the aerodynamic damping can be useful for an accurate aeromechanical characterization of these kind of blade rows. The geometry under investigation is a typical steam turbine blade row at design point. Computational aeroelastic analyses are performed on the more relevant modeshapes, sampling the nodal diameters, in order to well describe the typical aeroelastic stability curve. The presence of the tip shroud implies a strong mechanical coupling between adjacent blades resulting in complex modeshapes with high frequency, significantly different from those usually analyzed in the flutter analysis. The results in term of aerodynamic damping curves are rather different from the usually sinusoidal shape. This is due to the large variation of the frequency over the analyzed nodal diameters, especially at low nodal diameters range. This results are useful to give a better insight in the aeroelastic response of this type of blades.
2016
Conference Proceedings
ASME Turbo Expo 2016
Seoul, South Korea
June 13-17, 2016
Goal 7: Affordable and clean energy
Peruzzi, L; Bellucci, J; Pinelli, L; Arnone, A; Arcangeli, L; Cosi, L; Mazzucco, M
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1052510
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact