Interest in vertical-axis wind turbines (VAWTs) is experiencing a renaissance after most major research projects came to a standstill in the mid 1990s, in favor of conventional horizontal-axis turbines (HAWTs). Nowadays, the inherent advantages of the VAWT concept, especially in the Darrieus configuration, may outweigh their disadvantages in specific applications, like the urban context or floating platforms. To enable these concepts further, efficient, accurate, and robust aerodynamic prediction tools and design guidelines are needed for VAWTs, for which low-order simulation methods have not reached yet a maturity comparable to that of the blade element momentum theory for HAWTs' applications. The two computationally efficient methods that are presently capable of capturing the unsteady aerodynamics of Darrieus turbines are the double multiple streamtubes (DMS) theory, based on momentum balances, and the lifting line theory (LLT) coupled to a free vortex wake model. Both methods make use of tabulated lift and drag coefficients to compute the blade forces. Since the incidence angles range experienced by a VAWT blade is much wider than that of a HAWT blade, the accuracy of polars in describing the stall region and the transition toward the “thin plate like” behavior has a large effect on simulation results. This paper will demonstrate the importance of stall and poststall data handling in the performance estimation of Darrieus VAWTs. Using validated CFD simulations as a baseline, comparisons are provided for a blade in VAWT-like motion based on a DMS and a LLT code employing three sets of poststall data obtained from a wind tunnel campaign, XFoil predictions extrapolated with the Viterna–Corrigan model and a combination of them. The polar extrapolation influence on quasi-steady operating conditions is shown and azimuthal variations of thrust and torque are compared for exemplary tip-speed ratios (TSRs). In addition, the major relevance of a proper dynamic stall model into both the simulation methods is highlighted and discussed.

Effects of Airfoil's Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbine Performance / Marten, David; Bianchini, Alessandro; Pechlivanoglou, Georgios; Balduzzi, Francesco; Nayeri, Christian Navid; Ferrara, Giovanni; Paschereit, Christian Oliver; Ferrari, Lorenzo. - In: JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. - ISSN 0742-4795. - STAMPA. - 139:(2017), pp. 022606-1-022606-9. [10.1115/1.4034326]

Effects of Airfoil's Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbine Performance

BIANCHINI, ALESSANDRO;BALDUZZI, FRANCESCO;FERRARA, GIOVANNI;
2017

Abstract

Interest in vertical-axis wind turbines (VAWTs) is experiencing a renaissance after most major research projects came to a standstill in the mid 1990s, in favor of conventional horizontal-axis turbines (HAWTs). Nowadays, the inherent advantages of the VAWT concept, especially in the Darrieus configuration, may outweigh their disadvantages in specific applications, like the urban context or floating platforms. To enable these concepts further, efficient, accurate, and robust aerodynamic prediction tools and design guidelines are needed for VAWTs, for which low-order simulation methods have not reached yet a maturity comparable to that of the blade element momentum theory for HAWTs' applications. The two computationally efficient methods that are presently capable of capturing the unsteady aerodynamics of Darrieus turbines are the double multiple streamtubes (DMS) theory, based on momentum balances, and the lifting line theory (LLT) coupled to a free vortex wake model. Both methods make use of tabulated lift and drag coefficients to compute the blade forces. Since the incidence angles range experienced by a VAWT blade is much wider than that of a HAWT blade, the accuracy of polars in describing the stall region and the transition toward the “thin plate like” behavior has a large effect on simulation results. This paper will demonstrate the importance of stall and poststall data handling in the performance estimation of Darrieus VAWTs. Using validated CFD simulations as a baseline, comparisons are provided for a blade in VAWT-like motion based on a DMS and a LLT code employing three sets of poststall data obtained from a wind tunnel campaign, XFoil predictions extrapolated with the Viterna–Corrigan model and a combination of them. The polar extrapolation influence on quasi-steady operating conditions is shown and azimuthal variations of thrust and torque are compared for exemplary tip-speed ratios (TSRs). In addition, the major relevance of a proper dynamic stall model into both the simulation methods is highlighted and discussed.
2017
139
022606-1
022606-9
Goal 7: Affordable and clean energy
Marten, David; Bianchini, Alessandro; Pechlivanoglou, Georgios; Balduzzi, Francesco; Nayeri, Christian Navid; Ferrara, Giovanni; Paschereit, Christian Oliver; Ferrari, Lorenzo
File in questo prodotto:
File Dimensione Formato  
gtp_139_02_022606.pdf

Accesso chiuso

Descrizione: Polars Turbo Expo 2016 su JEGTP
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1052884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 21
social impact