We report here the determination of the helical spin structure of three Ln-based chiral chains of the formula [Ln(Hnic)(nic)2(NO3)]n (Hnic = nicotinic acid; Ln = Tb, Dy, and Er) by means of cantilever torque magnetometry. While the Dy and Er derivatives are strongly axial (easy-axis and easy-plane anisotropy, respectively), the Tb derivative is characterized by a remarkable rhombicity. In agreement with these findings, alternating-current susceptibility reveals slow magnetic relaxation only in the Dy derivative. Dilution of Dy(III) ions in the diamagnetic Y-based analogue shows that the weak ferromagnetic intrachain interactions do not contribute significantly to the energy barrier for the reversal of magnetization, which is better described as a single-ion process. Single crystals of the two enantiomers of the Dy derivative have also been investigated using hard X-ray synchrotron radiation at the L-edge of the metal revealing optical activity although with negligible involvement of the 4f electrons of the Dy(III) ion.
Spin Helicity in Chiral Lanthanide Chains / Mihalcea, Ionut; Perfetti, Mauro; Pineider, Francesco; Tesi, Lorenzo; Mereacre, Valeriu; Wilhelm, Fabrice; Rogalev, Andrei; Anson, Christopher E; Powell, Annie K; Sessoli, Roberta. - In: INORGANIC CHEMISTRY. - ISSN 0020-1669. - ELETTRONICO. - (2016), pp. 1-7. [10.1021/acs.inorgchem.6b01010]
Spin Helicity in Chiral Lanthanide Chains
PERFETTI, MAURO;PINEIDER, FRANCESCO;TESI, LORENZO;ROGALEV, ANDREI;SESSOLI, ROBERTA
2016
Abstract
We report here the determination of the helical spin structure of three Ln-based chiral chains of the formula [Ln(Hnic)(nic)2(NO3)]n (Hnic = nicotinic acid; Ln = Tb, Dy, and Er) by means of cantilever torque magnetometry. While the Dy and Er derivatives are strongly axial (easy-axis and easy-plane anisotropy, respectively), the Tb derivative is characterized by a remarkable rhombicity. In agreement with these findings, alternating-current susceptibility reveals slow magnetic relaxation only in the Dy derivative. Dilution of Dy(III) ions in the diamagnetic Y-based analogue shows that the weak ferromagnetic intrachain interactions do not contribute significantly to the energy barrier for the reversal of magnetization, which is better described as a single-ion process. Single crystals of the two enantiomers of the Dy derivative have also been investigated using hard X-ray synchrotron radiation at the L-edge of the metal revealing optical activity although with negligible involvement of the 4f electrons of the Dy(III) ion.File | Dimensione | Formato | |
---|---|---|---|
InorgChem_2016.pdf
Accesso chiuso
Descrizione: InorgChem_2016
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.