Over recent years, gold nanorods (GNRs) have emerged as a promising material in biomedical optics and have been proposed as contrast agents for the photothermal therapy and the photoacoustic imaging of tumors. A pioneering approach to target tumors is the use of cellular vehicles, i.e. cells of the immune system that exhibit an innate tropism to tumors and that can be serve as Trojan horses. This strategy relies on cell types, such as tumor-associated macrophages or T cells, that are recruited by or naturally traffic to the microenvironment of tumors and that can be isolated from a patient and loaded with plasmonic particles in vitro. In this work, GNRs were synthesized and designed to combine high optical and photo-stability and the ability to accumulate into cells of the immuno system. Particles were silanized, PEGylated and conjugated with cationic moieties. Different cationic compounds were tested and the cell viability and uptake of the particles were studied on complementary cell types. The cytotoxicity test was based on a colorimetric WST-8 assay while the intracellular amount of gold and the optical absorbance of the cells were quantified by spectrophotometry. Moreover, we investigated the effect of GNRs on the cell migration and the production of cytokines in the presence of pro-inflammatory stimuli, which provide a functional overview on the feasibility of this approach to target.

Preparation of cellular vehicles for delivery of gold nanorods to tumors / Centi, S.; Borri, C.; Lai, S.; Tatini, F.; Colagrande, S.; Ratto, F.; Pini, R.. - ELETTRONICO. - 9722:(2016), pp. 97220B-9. (Intervento presentato al convegno Progress in Biomedical Optics and Imaging - Proceedings of SPIE) [10.1117/12.2209536].

Preparation of cellular vehicles for delivery of gold nanorods to tumors

BORRI, CLAUDIA;COLAGRANDE, STEFANO;
2016

Abstract

Over recent years, gold nanorods (GNRs) have emerged as a promising material in biomedical optics and have been proposed as contrast agents for the photothermal therapy and the photoacoustic imaging of tumors. A pioneering approach to target tumors is the use of cellular vehicles, i.e. cells of the immune system that exhibit an innate tropism to tumors and that can be serve as Trojan horses. This strategy relies on cell types, such as tumor-associated macrophages or T cells, that are recruited by or naturally traffic to the microenvironment of tumors and that can be isolated from a patient and loaded with plasmonic particles in vitro. In this work, GNRs were synthesized and designed to combine high optical and photo-stability and the ability to accumulate into cells of the immuno system. Particles were silanized, PEGylated and conjugated with cationic moieties. Different cationic compounds were tested and the cell viability and uptake of the particles were studied on complementary cell types. The cytotoxicity test was based on a colorimetric WST-8 assay while the intracellular amount of gold and the optical absorbance of the cells were quantified by spectrophotometry. Moreover, we investigated the effect of GNRs on the cell migration and the production of cytokines in the presence of pro-inflammatory stimuli, which provide a functional overview on the feasibility of this approach to target.
2016
Progress in Biomedical Optics and Imaging - Proceedings of SPIE
Progress in Biomedical Optics and Imaging - Proceedings of SPIE
Centi, S.; Borri, C.; Lai, S.; Tatini, F.; Colagrande, S.; Ratto, F.; Pini, R.
File in questo prodotto:
File Dimensione Formato  
1 Preparation of cellular vehicles for delivery of gold nanorods to tumors.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 387.75 kB
Formato Adobe PDF
387.75 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1054878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact