We develop the complete free boundary analysis for solutions to classical obstacle problems related to nondegenerate nonlinear variational energies. The key tools are optimal $C^{1,1}$ regularity, which we review more generally for solutions to variational inequalities driven by nonlinear coercive smooth vector fields, and the results in \cite{FocGelSp15} concerning the obstacle problem for quadratic energies with Lipschitz coefficients. Furthermore, we highlight similar conclusions for locally coercive vector fields having in mind applications to the area functional, or more generally to area-type functionals, as well.

The classical obstacle problem for nonlinear variational energies / Focardi, Matteo; Geraci, Francesco; Spadaro, Emanuele. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 154:(2017), pp. 71-87. [10.1016/j.na.2016.10.020]

The classical obstacle problem for nonlinear variational energies

FOCARDI, MATTEO;GERACI, FRANCESCO;
2017

Abstract

We develop the complete free boundary analysis for solutions to classical obstacle problems related to nondegenerate nonlinear variational energies. The key tools are optimal $C^{1,1}$ regularity, which we review more generally for solutions to variational inequalities driven by nonlinear coercive smooth vector fields, and the results in \cite{FocGelSp15} concerning the obstacle problem for quadratic energies with Lipschitz coefficients. Furthermore, we highlight similar conclusions for locally coercive vector fields having in mind applications to the area functional, or more generally to area-type functionals, as well.
2017
154
71
87
Focardi, Matteo; Geraci, Francesco; Spadaro, Emanuele
File in questo prodotto:
File Dimensione Formato  
Focardi-Geraci-Spadaro_NATMA17.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 736.85 kB
Formato Adobe PDF
736.85 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1056177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact