We present spectroscopic measurements looking for the coherent coupling between molecular magnetic centers and microwave photons. The aim is to find the optimal conditions and the best molecular features to achieve the quantum strong coupling regime, for which coherent dynamics of hybrid photon-spin states take place. To this end, we used a high critical temperature YBCO superconducting planar resonator working at 7.7 GHz and at low temperatures to investigate three molecular mononuclear coordination compounds, namely (PPh4)2[Cu(mnt)2] (where mnt2− = maleonitriledithiolate), [ErPc2]−TBA+ (where pc2− is the phtalocyaninato and TBA+ is the tetra-n-butylammonium cation) and Dy(trensal) (where H3trensal = 2,2’,2’’-tris(salicylideneimino)triethylamine). Although the strong coupling regime was not achieved in these preliminary experiments, the results provided several hints on how to design molecular magnetic centers to be integrated into hybrid quantum circuits.

Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits / Bonizzoni, C.; Ghirri, A.; Bader, K.; van Slageren, J.; Perfetti, M.; Sorace, L.; Lan, Y.; Fuhr, O.; Ruben, M.; Affronte, M.. - In: DALTON TRANSACTIONS. - ISSN 1477-9226. - ELETTRONICO. - 45:(2016), pp. 16596-16603. [10.1039/C6DT01953F]

Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits

Perfetti, M.;SORACE, LORENZO;
2016

Abstract

We present spectroscopic measurements looking for the coherent coupling between molecular magnetic centers and microwave photons. The aim is to find the optimal conditions and the best molecular features to achieve the quantum strong coupling regime, for which coherent dynamics of hybrid photon-spin states take place. To this end, we used a high critical temperature YBCO superconducting planar resonator working at 7.7 GHz and at low temperatures to investigate three molecular mononuclear coordination compounds, namely (PPh4)2[Cu(mnt)2] (where mnt2− = maleonitriledithiolate), [ErPc2]−TBA+ (where pc2− is the phtalocyaninato and TBA+ is the tetra-n-butylammonium cation) and Dy(trensal) (where H3trensal = 2,2’,2’’-tris(salicylideneimino)triethylamine). Although the strong coupling regime was not achieved in these preliminary experiments, the results provided several hints on how to design molecular magnetic centers to be integrated into hybrid quantum circuits.
2016
45
16596
16603
Bonizzoni, C.; Ghirri, A.; Bader, K.; van Slageren, J.; Perfetti, M.; Sorace, L.; Lan, Y.; Fuhr, O.; Ruben, M.; Affronte, M.
File in questo prodotto:
File Dimensione Formato  
DaltonT_2016.pdf

Accesso chiuso

Descrizione: DaltonT_2016
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1056614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact