A modified version of the Ginzburg-Landau equation is introduced which accounts for asymmetric couplings between neighbors sites on a one-dimensional lattice, with periodic boundary conditions. The drift term which reflects the imposed microscopic asymmetry seeds a generalized class of instabilities, reminiscent of the Benjamin-Feir type. The uniformly synchronized solution is spontaneously destabilized outside the region of parameters classically associated to the Benjamin-Feir instability, upon injection of a nonhomogeneous perturbation. The ensuing patterns can be of the traveling wave type or display a patchy, colorful mosaic for the modulus of the complex oscillators amplitude.

Drift-induced Benjamin-Feir instabilities / Di Patti, F.; Fanelli, D.; Carletti, T.. - In: EUROPHYSICS LETTERS. - ISSN 0295-5075. - STAMPA. - 114:(2016), pp. 68003-68007. [10.1209/0295-5075/114/68003]

Drift-induced Benjamin-Feir instabilities

DI PATTI, FRANCESCA;FANELLI, DUCCIO;CARLETTI, TIMOTEO
2016

Abstract

A modified version of the Ginzburg-Landau equation is introduced which accounts for asymmetric couplings between neighbors sites on a one-dimensional lattice, with periodic boundary conditions. The drift term which reflects the imposed microscopic asymmetry seeds a generalized class of instabilities, reminiscent of the Benjamin-Feir type. The uniformly synchronized solution is spontaneously destabilized outside the region of parameters classically associated to the Benjamin-Feir instability, upon injection of a nonhomogeneous perturbation. The ensuing patterns can be of the traveling wave type or display a patchy, colorful mosaic for the modulus of the complex oscillators amplitude.
2016
114
68003
68007
Di Patti, F.; Fanelli, D.; Carletti, T.
File in questo prodotto:
File Dimensione Formato  
epl_114_6_68003.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 797.75 kB
Formato Adobe PDF
797.75 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1056791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact