Skeletal age assessment is a common and time-consuming task in pediatric radiology. In this work we describe a system which implements the TW2 method, using a neural network architecture. Each bone complex is localized on the image, and preprocessed using either a Gabor transform or a multi-scale Difference of Gaussian filtering. The output of the preprocessing stage is fed to a set of neural networks trained to classify each bone accordingly to the TW2 method. Afterward, the skeletal age is estimated and compared with the classification of an expert radiologist.

An artificial neural network architecture for skeletal age assessment / Bocchi, Leonardo; Ferrara, Francesco; Nicoletti, Ivan; Valli, Guido. - ELETTRONICO. - 1:(2003), pp. 1077-1080. (Intervento presentato al convegno Proceedings: 2003 International Conference on Image Processing, ICIP-2003 tenutosi a Barcelona, esp nel 2003).

An artificial neural network architecture for skeletal age assessment

BOCCHI, LEONARDO;FERRARA, FRANCESCO;VALLI, GUIDO
2003

Abstract

Skeletal age assessment is a common and time-consuming task in pediatric radiology. In this work we describe a system which implements the TW2 method, using a neural network architecture. Each bone complex is localized on the image, and preprocessed using either a Gabor transform or a multi-scale Difference of Gaussian filtering. The output of the preprocessing stage is fed to a set of neural networks trained to classify each bone accordingly to the TW2 method. Afterward, the skeletal age is estimated and compared with the classification of an expert radiologist.
2003
IEEE International Conference on Image Processing
Proceedings: 2003 International Conference on Image Processing, ICIP-2003
Barcelona, esp
2003
Bocchi, Leonardo; Ferrara, Francesco; Nicoletti, Ivan; Valli, Guido
File in questo prodotto:
File Dimensione Formato  
neuralNetworkForSkeletalAgesAsessment.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 277.95 kB
Formato Adobe PDF
277.95 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1057519
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 16
social impact