The rationalisation of single molecule magnets’ (SMMs) magnetic properties by quantum mechanical approaches represents a major task in the field of the Molecular Magnetism. The fundamental interpretative key of molecular magnetism is the phenomenological Spin Hamiltonian and the understanding of the role of its different terms by electronic structure calculations is expected to steer the rational design of new and more performing SMMs. This paper deals with the ab initio calculation of isotropic and anisotropic exchange contributions in the Fe(III) dimer [Fe 2 (OCH 3 ) 2 (dbm) 4 ]. This system represents the building block of one of the most studied Single Molecule Magnets ([Fe 4 RC(CH 2 O) 3 ) 2 (dpm) 6 ] where R can be an aliphatic chain or a phenyl group just to name the most common functionalization groups) and its relatively reduced size allows the use of a high computational level of theory. Calculations were performed using CASSCF and NEVPT2 approaches on the X-ray geometry as assessment of the computational protocol, which has then be used to evinced the importance of the outer coordination shell nature through organic ligand modelization. Magneto-structural correlations as function of internal degrees of freedom for isotropic and anisotropic exchange contributions are also presented, outlining, for the first time, the extremely rapidly changing nature of the anisotropic exchange coupling. View Full-Text

The Role of Anisotropic Exchange in Single Molecule Magnets: A CASSCF/NEVPT2 Study of the Fe4 SMM Building Block [Fe2(OCH3)2(dbm)4] Dimer / Lunghi, Alessandro; Totti, Federico. - In: INORGANICS. - ISSN 2304-6740. - STAMPA. - 4:(2016), pp. 28-38. [10.3390/inorganics4040028]

The Role of Anisotropic Exchange in Single Molecule Magnets: A CASSCF/NEVPT2 Study of the Fe4 SMM Building Block [Fe2(OCH3)2(dbm)4] Dimer

LUNGHI, ALESSANDRO;TOTTI, FEDERICO
Supervision
2016

Abstract

The rationalisation of single molecule magnets’ (SMMs) magnetic properties by quantum mechanical approaches represents a major task in the field of the Molecular Magnetism. The fundamental interpretative key of molecular magnetism is the phenomenological Spin Hamiltonian and the understanding of the role of its different terms by electronic structure calculations is expected to steer the rational design of new and more performing SMMs. This paper deals with the ab initio calculation of isotropic and anisotropic exchange contributions in the Fe(III) dimer [Fe 2 (OCH 3 ) 2 (dbm) 4 ]. This system represents the building block of one of the most studied Single Molecule Magnets ([Fe 4 RC(CH 2 O) 3 ) 2 (dpm) 6 ] where R can be an aliphatic chain or a phenyl group just to name the most common functionalization groups) and its relatively reduced size allows the use of a high computational level of theory. Calculations were performed using CASSCF and NEVPT2 approaches on the X-ray geometry as assessment of the computational protocol, which has then be used to evinced the importance of the outer coordination shell nature through organic ligand modelization. Magneto-structural correlations as function of internal degrees of freedom for isotropic and anisotropic exchange contributions are also presented, outlining, for the first time, the extremely rapidly changing nature of the anisotropic exchange coupling. View Full-Text
2016
4
28
38
Lunghi, Alessandro; Totti, Federico
File in questo prodotto:
File Dimensione Formato  
Inorganics 2016, 4, 28.pdf

accesso aperto

Descrizione: Articolo Principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1062143
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact