The engine and vehicle design in Formula SAE competition has to accomplish a strict regulation. In order to limit the maximum power, an air restrictor of 20mm of diameter is imposed in the intake line. To overcome the limitations caused by the restrictor, Firenze Race Team equipped its one-cylinder engine with a turbocharger, which is conventionally provided with a wastegate (WG) valve to limit the maximum boost pressure and avoid knocking phenomena. Typically, the WG valve is controlled by a pneumatic actuator, which opens the valve according to a defined and constant maximum boost pressure downstream the compressor in the whole engine operating range. Therefore, the boost pressure at high engine speed, in which knocking problems are less intense and the volumetric efficiency is lower, is limited by the threshold value defined at medium-low engine speeds, i.e. the pneumatic WG limits the maximum power that the engine can supply. In this study, the implementation of an electronic control system for the WG valve is described together with a dedicated control strategy aimed at providing the desired boost pressure at full load for each engine speed, in order to get the maximum power avoiding knocking phenomena. The electronic WG provided higher power values and a more extended torque curve in comparison to the conventional pneumatic one.
Optimization of the Performance of a Formula SAE Engine by Means of a Wastegate Valve Electronically Actuated / Romani, Luca; Vichi, Giovanni; Bianchini, Alessandro; Ferrari, Lorenzo; Ferrara, Giovanni. - In: ENERGY PROCEDIA. - ISSN 1876-6102. - ELETTRONICO. - 101:(2016), pp. 654-661. (Intervento presentato al convegno ATI 2016 - 71st Conference of the Italian Thermal Machines Engineering Association) [10.1016/j.egypro.2016.11.083].
Optimization of the Performance of a Formula SAE Engine by Means of a Wastegate Valve Electronically Actuated
ROMANI, LUCA;BIANCHINI, ALESSANDRO;FERRARA, GIOVANNI
2016
Abstract
The engine and vehicle design in Formula SAE competition has to accomplish a strict regulation. In order to limit the maximum power, an air restrictor of 20mm of diameter is imposed in the intake line. To overcome the limitations caused by the restrictor, Firenze Race Team equipped its one-cylinder engine with a turbocharger, which is conventionally provided with a wastegate (WG) valve to limit the maximum boost pressure and avoid knocking phenomena. Typically, the WG valve is controlled by a pneumatic actuator, which opens the valve according to a defined and constant maximum boost pressure downstream the compressor in the whole engine operating range. Therefore, the boost pressure at high engine speed, in which knocking problems are less intense and the volumetric efficiency is lower, is limited by the threshold value defined at medium-low engine speeds, i.e. the pneumatic WG limits the maximum power that the engine can supply. In this study, the implementation of an electronic control system for the WG valve is described together with a dedicated control strategy aimed at providing the desired boost pressure at full load for each engine speed, in order to get the maximum power avoiding knocking phenomena. The electronic WG provided higher power values and a more extended torque curve in comparison to the conventional pneumatic one.File | Dimensione | Formato | |
---|---|---|---|
published_EnPro_wastegate.pdf
Accesso chiuso
Descrizione: published EnPro wastegate
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.